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Curiosity and Reward: Valence Predicts Choice and Information Prediction
Errors Enhance Learning
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Curiosity drives many of our daily pursuits and interactions; yet, we know surprisingly little about how
it works. Here, we harness an idea implied in many conceptualizations of curiosity: that information has
value in and of itself. Reframing curiosity as the motivation to obtain reward—where the reward is
information—allows one to leverage major advances in theoretical and computational mechanisms of
reward-motivated learning. We provide new evidence supporting 2 predictions that emerge from this
framework. First, we find an asymmetric effect of positive versus negative information, with positive
information enhancing both curiosity and long-term memory for information. Second, we find that it is
not the absolute value of information that drives learning but, rather, the gap between the reward expected
and reward received, an “information prediction error.” These results support the idea that information
functions as a reward, much like money or food, guiding choices and driving learning in systematic ways.
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Curiosity is a powerful force. Yet for something that drives
many of our daily pursuits, surprisingly little is known about it.
Psychologists have long struggled to provide a formal account of
curiosity. It has been defined as “an inconsistency or a gap” in
knowledge (James, 1890, p. 430) and has been suggested to arise
when an animal is discomfited by uncertainty or a lack of infor-
mation (Berlyne, 1960). Building on these ideas, Loewenstein
(1994) posited an information gap theory of curiosity, suggesting
that curiosity is the result of a perceived gap between what one
knows and what one wants to know. An innovation of this theory
is that it aims to describe, in more concrete terms, the subjective
value of that which curiosity seeks: information. Indeed, the idea
that information has value in and of itself—that it is rewarding—is

implied in many of our conceptualizations of curiosity. But so far
there has been scarce experimental evidence supporting this no-
tion.

Recent studies have demonstrated that monkeys value informa-
tion about upcoming primary rewards (such as water; Bromberg-
Martin & Hikosaka, 2009, 2011). They are even willing to forgo
some portion of this reward to receive advance information about
it, despite the information’s having no influence on the likelihood
of receiving the reward (Blanchard, Hayden, & Bromberg-Martin,
2015). Further, the same dopaminergic neurons that signal changes
in the value of the reward also code changes in the value of informa-
tion, suggesting that information and primary rewards share behav-
ioral and neurobiological properties. Research in humans has further
supported this idea, demonstrating that people are more willing to
wait and pay for information about which they’re more curious (Kang
et al., 2009) and that high-curiosity information is associated with
activation in brain areas known to respond to rewards, including the
nucleus accumbens and the caudate (Gruber, Gelman, & Ranganath,
2014; Kang et al., 2009).

There is also a strong link between how valuable information is
and the likelihood of remembering it. People are more likely to
remember high-curiosity information; even incidental information
presented during a high-curiosity state is better remembered later
(Gruber et al., 2014; Kang et al., 2009; Mullaney, Carpenter,
Grotenhuis, & Burianek, 2014). Such findings dovetail with well-
known findings regarding the enhancing effect of reward on sub-
sequent memory (e.g., Adcock, Thangavel, Whitfield-Gabrieli,
Knutson, & Gabrieli, 2006).

These studies support an information-as-reward hypothesis,
demonstrating that curiosity conforms to basic characteristics of
reward-motivated behavior. However, they leave open critical
questions related to the extent to which this analogy holds true at
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a deeper level. In particular, there are two central features of
reward-driven behavior that have been extensively characterized
but whose relevance to curiosity remains unknown. These are (a)
valence (reward vs. punishment) and (b) predictions errors.

It is known that rewards and punishments—and gains and
losses—have differential effects on both behavior and brain (e.g.,
Frank, Seeberger, & O’Reilly, 2004; Kahneman & Tversky, 1979;
Tom, Fox, Trepel, & Poldrack, 2007; Seymour, Daw, Dayan,
Singer, & Dolan, 2007). Positive versus negative outcomes also
have asymmetric effects on information seeking (Case, Andrews,
Johnson, & Allard, 2005; Fischer, Jonas, Frey, & Kastenmüller,
2008; Sweeny, Melnyk, Miller & Shepperd, 2010) and intertem-
poral choice (Berns et al., 2006; Hardisty, Appelt, & Weber, 2013;
Loewenstein, 2006). People differentially seek positive versus
negative information, depending on affect (e.g., Brashers, 2001;
Griffin, Dunwoody, & Neuwirth, 1999; Schwarz & Clore, 1983;
Yang & Kahlor, 2013). And they generally remember more-
valenced, as opposed to neutral, information (for a review, see
LaBar & Cabeza, 2006). Moreover, positive valence enhances the
effect of reward on memory (Wittmann, Schiltz, Boehler, & Düzel,
2008). Thus, valence affects how information is sought and how it
is remembered, suggesting it may affect the value of information
itself.

A separate literature has suggested that gaps in information—
information prediction errors—may be important drivers of curi-
osity and memory. Neurobiologically, rewards exert their effect
through dopaminergic reward prediction errors (Daw & Doya,
2006; Schultz, 2006; Schultz, Dayan, & Montague, 1997). A key
finding from computational and neurobiological accounts of
reward-guided learning is that dopamine neurons in the midbrain
signal the difference between the expected value of the reward and
the value of the reward actually received, suggesting that it is the
discrepancy between received reward and expected reward that
drives learning (Rescorla & Wagner, 1972; for a review, see
Schultz, 2006). If information operates similarly, information pre-
diction errors may play a key role in curiosity and learning. Indeed,
a core feature of Loewenstein’s (1994) information gap theory is
that curiosity is partly driven by predictions about the ability of
information to resolve uncertainty. This idea applies a “reference-
point concept” to curiosity, suggesting that people are sensitive to
both absolute and relative gaps in information and arguing that
they are more likely to be curious about information if they
estimate that the probability of that information satisfying their
curiosity is high (Loewenstein, 1994, p. 87).

Here, we examined the information-as-reward hypothesis, test-
ing two new predictions about the role of valence and information
prediction errors in driving curiosity and memory. We used will-
ingness to wait, a well-established measure of reward-motivated
behavior (e.g., Frederick, Loewenstein, & O’Donoghue, 2002).
Because it is known that time is valuable, waiting can be used as
a measure of the motivational value of rewards (e.g., Hayden,
Parikh, Deaner, & Platt, 2007). If curiosity reflects the value of
information, one would expect participants to show greater will-
ingness to wait for more-valuable information, that is, information
that engendered greater curiosity.

We tested two hypotheses: (1) The valence of information
affects curiosity and subsequent learning, specifically that posi-
tively and negatively valenced information engender greater curi-
osity and promote better learning than does neutral information

and (2) information prediction errors affect learning. The notion of
quantifying curiosity as the anticipation of the value of information
and satisfaction as the judged value of received information is a
new idea, directly motivated by theories and studies in systems
neuroscience demonstrating that dopaminergic neurons show par-
allel responses to the anticipation and receipt of information. We
tested the relevance of this framework to curiosity, proposing that
the difference between the satisfaction experienced upon receipt of
information and the curiosity experienced in anticipation of infor-
mation functions as an information prediction error. We hypothe-
sized that this information prediction error is an important factor in
how curiosity drives learning, such that people better remember
information associated with more-positive prediction errors.

Method

Participants

A total of 84 individuals participated in this 2-day study (mean
age � 20.9 � 4.9 years; 56 female, 28 male). On the first day, 55
participants received research credit for their participation and 29
participants were paid $12/hr. The participants who received re-
search credit were then surprised with an offer to participate in a
follow-up experiment in the lab for payment instead of credit; 43
returned (mean age � 21.5 � 6.4 years; 27 female, 16 male). The
participants paid on the first day were told from the onset that this
was a 2-day study, though they were not told the purpose of the
second session; 26 of these participants returned for the second day
(mean age � 20.7 � 2.3 years; 18 female, 8 male). On the second
day, all participants were paid $12/hr. Three participants were
excluded from the analysis because they did not complete the
curiosity and satisfaction-rating portion of the task on the first day,
leaving 81 participants who participated fully in the first day of the
study and 66 participants who participated fully in both days of the
study.

Determination of Sample Size

In a previous pilot study (N � 38), we ran a simplified logistic
regression model using the average curiosity rating associated with
each question as the predictor and found the following result:
e^�0 � 0.07 (p � .001); e^�curiosity � 2.03 (p � .001). Then,
using the powerMediation package in R (Qiu, 2015), which cal-
culates sample sizes on the basis of the methods outlined in Hsieh,
Bloch, and Larsen (1998), we calculated that a sample size of 63
would yield of power of 0.8 at alpha level 0.05. This study differs
somewhat from the current study in that the curiosity ratings were
generated by a separate group of participants; we, therefore, aimed
for a slightly larger sample size to ensure adequate power.

Materials

The task was presented on Apple Macintosh computers, using
Matlab (2010) and the Psychophysics Toolbox (Brainard, 1997) to
present stimuli and collect responses. Study stimuli included gen-
eral interest trivia questions culled from Internet sources, including
www.corsinet.com and www.triviaplaying.com. Examples in-
cluded “Which poisonous snake smells like fresh cut cucumbers?”
“What comet was first sighted by the Chinese in 240 B.C.?” and
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“What does ‘SPF’ mean on sunscreen containers?” Participants
saw 69 trivia questions in the initial trivia task. The same 69
questions were also used in both the curiosity-rating and subse-
quent memory components of the task explained in the Procedure
section.

Preexperiment Valence Ratings

Across three separate trivia studies, we asked participants to rate
the valence of trivia questions. These participants (N � 102, mean
age � 22.69 � 5.96 years; 72 female, 30 male) were shown each
trivia question and asked to rate how positive or negative they
thought each question was on a 7-point scale ranging from 1 (Very
negative) to 7 (Very positive; see Figure 1c). We pooled the results
of these valence ratings to create average valence ratings for each
question. We then ordered these questions on the basis of their
valence ratings and conducted a split of 1/3, 1/3, 1/3, correspond-
ing to valence categories of negative (M � 3.36 � 0.32), neutral
(M � 4.10 � 0.15), and positive (M � 4.78 � 0.33). The mean
valence ratings for each category differed significantly from each
other, F(2) � 147.10, p � .001 (pairwise, Bonferroni-corrected t
tests; all ps � .001).

Procedure

First, participants read a brief set of instructions and completed
a practice round of the trivia task. In the trivia task (see Figure 1a),
participants were presented with each trivia question, along with
three possible response choices: Skip, Wait, or Know. Participants
had 8 s to read the question and choose their response. They were
instructed that if they already knew the answer, they should press
the Know key. They were instructed to press Skip if they did not
know the answer but weren’t interested in finding out the answer
or weren’t willing to wait the amount of time designated by the
Wait option. After a brief fixation, both the Skip and Know re-
sponses were followed directly by the next question. Participants
were instructed to press the Wait response if they did not know the
answer and were interested in finding out the answer and willing
to wait the amount of time designated. The time delays associated
with the Wait option varied, in 5-s increments, from 10 to 30 s.
Upon choosing this option, participants saw a fixation cross for the
duration of the wait time, and then the answer appeared. Once they
chose to wait, they could not change their choice. Once the answer
was displayed, participants advanced to the next question by key
press. Participants were instructed at the outset that the entire
experiment would last 1 hr, regardless of their responses.

After the primary trivia task, participants were shown the same
69 questions and were asked to rate their curiosity upon first seeing
each question, on a scale from 1 (Not at all curious) to 7 (Very
curious). They were also asked to rate how satisfied they were with
the answer, on a scale from 1 (Not at all satisfied) to 7 (Very
satisfied; see Figure 1d).

Participants returned approximately one week (M � 7.2 � 1.8
days) after their initial sessions. During this follow-up session,
participants saw the list of questions they’d seen the first day and
typed in the answer to each question.

Analyses

All analyses were performed in R (R Core Team, 2013), and
mixed effects logistic regression analyses were conducted using
the lme4 package (Bates, Maechler, & Bolker, 2013). All Know
trials were excluded from the analyses. Each trial for each partic-
ipant was entered in as a separate data point, and mixed effects
logistic regression models were run on the entire data set, with
intercepts varying by participant; with trivia question as a random
effect; and with other variables, including curiosity and delay time,
included as both fixed and random effects. The exponential beta
coefficients are reported for each model to allow for easier inter-
pretation of each variable’s effect.

Valence. First, we evaluated whether participants’ choices to
wait were informed by their curiosity and the valence of the
question by running a mixed effects logistic regression analysis
with the intercept varying randomly by participant, the trivia item
as a random effect, and the valence category and individual curi-
osity ratings associated with each question as both fixed and
random effects.

To analyze effects of memory, we excluded all Skip and Know
trials, so that we examined only participants’ memory for answers
they chose to wait for. This eliminated one participant who did not
wait for any answers, leaving 65 participants. We tested whether
the valence of the information affected the likelihood of remem-
bering it, running a mixed effects logistic regression analysis with

Figure 1. Experimental paradigm for testing the relationship between
curiosity and willingness to wait for information. Panel a: In the primary
task, participants were shown a trivia question and three possible response
choices. If participants chose Skip or Know, they automatically advanced to
the next question. If they chose Wait, they had to wait the designated
amount of time, and then the answer was displayed. After completing the
primary trivia task, participants were asked to generate curiosity ratings
(Panel b), rating each question on a scale from 1 (Not at all curious) to 7
(Very curious) and satisfaction ratings (Panel d), rating each answer on a
scale from 1 (Not at all satisfied) to 7 (Very satisfied). Participants in
separate studies were shown these same questions and asked to generate
valence ratings (Panel c), again on a scale from 1 (Very negative) to 7 (Very
positive).
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the intercept varying randomly by participant, the trivia item as a
random effect, and the individual curiosity ratings and prior va-
lence category associated with each question as both fixed and
random effects.

Information prediction error. For each question, we had the
participants’ ratings of curiosity about the question and satisfaction
with the answer. Using these values, we calculated an information
prediction error, that is, the difference between the actual value of
the information received (satisfaction) and the anticipated value of
the information (curiosity). For example, if a participant rated a
question as a 4 in curiosity but a 6 in satisfaction, we considered
that an information prediction error of �2; if the participant rated
a question as a 4 in curiosity but the answer as a 2 in satisfaction,
we considered that an information prediction error of �2. We then
ran a mixed effects logistic regression model, with intercept vary-
ing by participant, trivia question as a random effect, and curiosity
and information prediction error as both fixed and random effects.

Results

Valence

Participants’ choices to wait were informed by their curiosity, as
well as the positive valence of the question and the wait time
associated with that trial (e^�0 � 0.04, p � .001; e^�curiosity �
4.93, p � .001; e^�wait time � 0.88, p � .001; e^�negative � 1.02,
p � .88; e^�positive � 1.31, p � .01; see Figure 2), such that
participants were more likely to wait for information they were
more curious about; less likely to wait for information associated
with a longer delay; and more likely to wait for positive, compared
to neutral, information.

Participants on average remembered 74.9% of answers correctly
(range: 36.4%–97.4%). Participants’ likelihood of remembering the
answers correctly was predicted by their initial curiosity about the
question and the positive valence rating associated with the question
(e^�0 � 0.09, p � .001; e^�curiosity � 1.79, p � .001; e^�negative �
1.10, p � .35; e^�positive � 1.36, p � .01; see Figure 3), such that

people were more likely to remember more-positive information and
information about which they were more curious.

Information Prediction Error

We found that participants’ likelihood of remembering an an-
swer correctly was predicted by their curiosity about the question
and the information prediction error (IPE) associated with that trial
(e^�0 � 1.03, p � .05; e^�curiosity � 1.26, p � .001; e^�IPE �
1.19, p � .001; see Figure 4), such that people were more likely to
remember information for which there was a more-positive pre-
diction error, that is, information for which satisfaction was greater
than curiosity.

Discussion

We found that information—even trivial information—can func-
tion as a reward, guiding choices and learning in predictable ways.
First, we found that the valence of information affects its reward
value, with people more willing to wait for more-positive, compared
to neutral, information. Moreover, this valence effect extended to
memory, with a greater likelihood of remembering more-positive
information. Second, we found that memory was better when there
was a positive prediction error, that is, when the reward value upon
receipt was greater than the anticipated reward value.

The importance of valence in these studies is particularly inter-
esting given that it is critical to learning. Recent studies have
offered some important insights into the mechanisms underlying
biases toward positive information and different tendencies to
learn from positive versus negative information (Frank et al., 2004;
Sharot, Guitart-Masip, Korn, Chowdhury, & Dolan, 2012). The
effects of valence on curiosity also raise questions about the
possible role of emotion. Indeed, emotion may even serve as
another form of information (Clore & Huntsinger, 2007; Schwarz,
2011). Although we did not directly measure emotion in this
experiment, existing data provide a possible framework. In partic-
ular, taking a dimensional approach to emotion (Feldman Barrett
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& Russell, 1998; Posner, Russell, & Peterson, 2005; Russell,
1980), one might think of an individual’s curiosity as reflecting an
arousal state. Prior evidence has suggested that pupil dilation, a
common measure of emotional arousal (Bradley, Miccoli, Escrig, &
Lang, 2008), is greater in states of higher curiosity (Kang et al., 2009).
Of course, compared to the types of stimuli typically used in exper-
iments examining the effect of emotion on information seeking and
memory, this information was relatively weak in arousal and valence.
Still, our results regarding valence suggest useful tools for future work
to more directly investigate the role of emotion in curiosity.

Curiosity can be difficult to define and is often conflated with
other similar concepts, including interest (Grossnickle, 2014). We
operationalized curiosity as the anticipation of reward, where the

reward is information. Similarly, information can come in many
forms and have a variety of uses, many of which might contribute
to its reward value and valence. Here, we focused on trivia, because
it offers a rich, multidimensional stimulus set, which has been used
previously to examine curiosity (e.g., Gruber et al., 2014; Kang et
al., 2009; Mullaney et al., 2014). One interesting feature of trivia
is that it is information that, by definition, has no real utility and
thus provides a conservative test of the information-as-reward
hypothesis. Future work should determine to what extent our
findings and those by others (e.g., Kang et al., 2009) generalize to
other forms of information.

Prior literature has focused primarily on the anticipation asso-
ciated with curiosity; here we additionally examined the impor-
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tance of satisfaction. Given that Loewenstein (1994) postulated
that a core feature of curiosity is its tendency to leave the curious
person unsatisfied, it is important to examine what happens when
curiosity is satisfied and how satisfaction predicts subsequent
learning. We found that curiosity is often satisfied and that the
disparity between the anticipated versus received reward predicts
later memory. This finding is consistent with recent animal studies
of dopamine neurons (Bromberg-Martin & Hikosaka, 2011), sug-
gesting that it may be important to consider both the value of
information and the value of reward itself in reinforcement learn-
ing models (Oudeyer, Kaplan, & Hafner, 2007; Yamamoto &
Ishikawa, 2010).

Understanding curiosity could have important implications for
educational interventions and learning strategies for children in the
classroom. It could also have implications for psychiatric and
neurological disorders, particularly those that implicate dopami-
nergic systems, such as schizophrenia and Parkinson’s disease.
These disorders often list deficiencies in reward processing among
their symptoms. It would, thus, be instructive to learn whether such
deficits extend to information and, therefore, whether diminished
curiosity might accompany some of these disorders.
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Retraction of Förster (2011)

The following article from the August 2011 issue is being retracted: Förster, J. (2011). Local and
global cross-modal influences between vision and hearing, tasting, smelling, or touching. Journal
of Experimental Psychology: General, 140(3), 364–389. doi:10.1037/a0023175

The retraction is at the request of the author and the University of Amsterdam. This retraction
follows the results of an investigation by the University of Amsterdam into the work of Jens Förster.
The University requested the retraction of this article based on its qualitative judgement of “strong
statistical evidence for low veracity”. The author joined in the request for the retraction.
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