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SUMMARY

Adolescents are notorious for engaging in reward-
seeking behaviors, a tendency attributed to height-
ened activity in the brain’s reward systems during
adolescence. It has been suggested that reward
sensitivity in adolescencemight be adaptive, but ev-
idence of an adaptive role has been scarce. Using a
probabilistic reinforcement learning task combined
with reinforcement learning models and fMRI, we
found that adolescents showed better reinforce-
ment learning and a stronger link between reinforce-
ment learning and episodic memory for rewarding
outcomes. This behavioral benefit was related to
heightened prediction error-related BOLD activity
in the hippocampus and to stronger functional con-
nectivity between the hippocampus and the stria-
tum at the time of reinforcement. These findings
reveal an important role for the hippocampus in
reinforcement learning in adolescence and suggest
that reward sensitivity in adolescence is related to
adaptive differences in how adolescents learn from
experience.

INTRODUCTION

Adolescents are highly sensitive to reward (Andersen et al.,

1997; Brenhouse et al., 2008; Galván et al., 2006; Somerville

and Casey, 2010; van Duijvenvoorde et al., 2014), which has

been linked to the emergence of maladaptive behaviors (Bren-

house and Andersen, 2011; Galván, 2013; Spear, 2000). It has

been suggested that this reward sensitivity may also be adap-

tive by promoting learning and exploration, which are critical

for transitioning to independence (Casey, 2015; Spear, 2000).

However, evidence for enhanced learning in adolescence and

associated neural mechanisms have remained elusive. We
sought to test the hypothesis that adolescents would be better

than adults at learning from reinforcement and that this benefit

would be related to enhanced activity in brain regions that sup-

port learning and memory, particularly the striatum and the

hippocampus.

Advances in understanding neural mechanisms of reinforce-

ment learning in adults have leveraged computational rein-

forcement learning models to quantify trial-by-trial learning

signals in the brain (Daw et al., 2005, 2011; O’Doherty et al.,

2003). Such models highlight the important role of prediction

errors (PEs), which reflect the extent to which reinforcement

received on a given trial deviates from what is expected. By

reflecting trial-by-trial deviations between predictions and out-

comes, prediction errors provide a learning signal that updates

subsequent behavior. fMRI studies in adults and adolescents

have shown that prediction errors correlate with blood-oxy-

gen-level-dependent (BOLD) activity in the striatum (e.g.,

Christakou et al., 2013; Cohen et al., 2010; Hare et al., 2008;

O’Doherty et al., 2003; van den Bos et al., 2012). Despite

some reports of enhanced striatal activity in adolescents, re-

ports of developmental differences in prediction error-related

striatal activity are mixed (Christakou et al., 2013; Cohen

et al., 2010; van den Bos et al., 2012), and so far, none have

shown a link between enhanced striatal BOLD activity in ado-

lescents and enhanced learning. This suggests that, to the

extent that adolescents’ reward sensitivity could be related

to benefits for learning, these may be accounted for by other

brain systems.

A natural brain candidate region for supporting reinforce-

ment learning in adolescence is the hippocampus, known for

its role in long-term episodic memory (e.g., Davachi, 2006; Ga-

brieli, 1998; Squire et al., 2004). The hippocampus also con-

tributes to reward-related behaviors, including reinforcement

learning, reward-guided motivation, and value-based decision

making. Studies in adults show that the hippocampus and the

striatum interact cooperatively to support both episodic en-

coding and reinforcement learning (Adcock et al., 2006; Bun-

zeck et al., 2010; Wimmer and Shohamy, 2012). These find-

ings suggest that reward sensitivity in adolescence could be
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Figure 1. Behavioral Task to Assess Trial-by-Trial Incremental Learning and Episodic Memory

(A) Learning phase: on each trial, a centrally presented cue appeared below two targets. Participants pressed a button to predict which flower a butterfly would

land on and received probabilistic reinforcement along with a trial-unique picture of a commonplace object.

(B) Memory test: participants saw a picture of an object, judged whether the picture was ‘‘old’’ or ‘‘new,’’ and then rated their level of confidence in that

choice.
related to enhanced hippocampal activity, to better reinforce-

ment learning, and to better episodic memory for rewarding

events. But, so far, the role of the hippocampus in reinforce-

ment learning in adolescence has not been studied.

We used a learning task in combination with fMRI and rein-

forcement learning models to address this gap. We hypothe-

sized that, compared to adults, (1) adolescents would be better

at learning from reinforcing outcomes; (2) adolescents would

show a greater relation between reinforcement learning and

episodic memory for rewarding events during learning; and (3)

these differences in learning would be related to enhanced

activity in the hippocampus and stronger coupling between the

hippocampus and the striatum.

Participants learned incrementally, based on trial-by-trial

reinforcement, to associate cues with outcomes (Figure 1A).

The association between cues and outcomes was probabilistic,

requiring continual use of reinforcement to update choices. Rein-

forcement was simply the word ‘‘correct’’ or ‘‘incorrect’’ and was

not motivated by monetary incentives to avoid confounds

related to the motivational significance of monetary reward

across age groups. To test episodic memory for reinforcement

events, we included a unique picture of an object that was inci-

dental to the reinforcement itself in each outcome (Figure 1B).

This design allowed us to measure (1) incremental learning

based on trial-by-trial reinforcement, (2) episodic memory for

reinforcement events, which are positive versus negative, and

(3) the role of the hippocampus and the striatum in both forms

of learning.

RESULTS

Enhanced Reinforcement Learning in Adolescents
We tested whether adolescents (n = 41, 13–17 years old)

differed from adults (n = 31, 20–30 years old) at learning

from reinforcements, comparing (1) overall performance and

(2) estimated learning rates from the reinforcement learning

model. Learning performance was quantified as the percent

of trials for which participants responded with the outcome

most often associated with a given cue (e.g., Poldrack et al.,

2001; Shohamy et al., 2004). A repeated measures (RM)-A-
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NOVA (block 3 group) revealed that both age groups showed

significant learning, but, consistent with our prediction, ado-

lescents’ learning exceeded that of adults (Figure 2A; main ef-

fect of block: F3,210 = 20.2, p = 0.000; block 3 group interac-

tion: F3,210 = 4.04, p = 0.008). Similar results were found for

optimal choice by trial (mixed-effect regression, main effect

of trial: z = 7.13, p = 0.000; group 3 trial interaction: z =

�2.97, p = 0.003), and we also found a better fit of the inter-

action model (c2 = 8.2, p = 0.004) after penalizing for model

complexity (Akaike, 1974).

To further characterize trial-by-trial responses, we applied a

standard reinforcement learning model to each participant’s

choice data (Equation 1 in Supplemental Experimental Proced-

ures). We chose to fit a canonical model, which represents a

standard class of models used extensively in studies of brain

correlates of reward prediction errors in adults (see Daw et al.,

2011). We estimated a learning rate parameter for each partici-

pant (a), which reflects the extent to which feedback on each trial

is used to update later choices. Here, a lower learning rate is bet-

ter because the probabilistic associations between cues and tar-

gets are fixed; a lower learning rate suggests that learning is

guided by accumulating evidence over a greater number of trials

rather than shifting behavior based on the outcome of any single

trial (e.g., Daw, 2011).

Importantly, the model provided a good fit to the observed

behavior across both groups (one-way t test comparing a null

model, t71 = �39.70, p = 0.000, Akaike’s Information Criterion

[AIC] used to penalize model complexity), and the model fits

did not differ between them (independent samples t test, t70 =

1.35, p = 0.2). Consistent with their overall better learning, ado-

lescents had a lower learning rate than adults (t70 = �3.0, p =

0.004; Figure 2B), indicating more incremental learning. More-

over, across groups, there was a significant negative correlation

between learning rate and improved performance on the task

(r70 =�0.43, p = 0.000; Figure S1A), indicating that lower learning

rates were indeed related to better performance. Reaction times

decreased over time for both groups, with no differences be-

tween them, suggesting that differences in learning are not

due to general differences in responses to task demands

(Figure S1B).



Figure 2. Behavioral Results: Adolescents

Differ fromAdults inReinforcement Learning

and in Association between Reinforcement

Learning and Episodic Memory

(A) Learning accuracy. Both groups learned over

time, but adolescents’ learning exceeded adults’.

Points reflect mean optimal choice for 24 or 30

(fMRI) trials; error bars show ±1 SEM.

(B) Learning rate parameter estimates from a

reinforcement learning model. Adolescents

had a lower learning rate than adults, re-

flecting more incremental updating of choice

based on reinforcement. Error bars show ±1

SEM.

(C) Memory accuracy (d0) for trial-unique pic-

tures that had been presented during reinforce-

ment events in the learning task. Memory ac-

curacy was computed separately by presented

reinforcement to determine whether adolescents

differed in their memory for positive and nega-

tive events. Adolescents and adults had better

memory for images that accompanied positive,

rather than negative, reinforcement. Error bars

show ±1 SEM between participants. ***p <

0.000, *p < 0.05.

(D) The relationship between trial-by-trial rein-

forcement learning signals and later episodic

memory for the reinforcement event. Only adolescents showed a reliable relationship between themagnitude of prediction error learning signals and likelihood of

remembering episodic details of the reinforcement event. Lines show association between level of prediction error and the predicted probability from the fitted

model for memory accuracy. Error bars around the fitted line show ±1 SEM.
Memory Positivity Bias in Adolescents and Adults
We first assessed episodic memory for the trial-unique objects

that were presented during learning, separating trials by whether

subjects had been shown positive (‘‘correct’’) versus negative

(‘‘incorrect’’) outcomes. We found a significant effect of rein-

forcement (RM-ANOVA, F1,70 = 24.6, p = 0.000; no effect of

group, F1,70 = 1.6, p = 0.2; no interaction, F1,70 = 1.2, p = 0.3; Fig-

ure 2C; Supplemental Information; Table S1), indicating that both

groups showed a ‘‘positivity bias’’—better memory for positive,

rather than negative, reinforcement events.

Trial-by-Trial Prediction Errors Are Associated with
Episodic Memory in Adolescents, but Not in Adults
We next tested whether reinforcement learning measures were

related to episodic memory using model-derived estimates of

trial-by-trial prediction errors (d) (Equation 1 in Supplemental

Experimental Procedures). Prediction errors provide an estimate

of how surprising each trial’s outcome was, which we used as a

within-participant regressor for both behavioral and brain imag-

ing analysis.

We found that prediction errors were related to memory ac-

curacy and that this effect significantly interacted with group

(mixed-effect regression interaction: PE 3 group, z = 2.4, p =

0.02; no main effect of PE, p = 0.2; or group, p = 0.7). This inter-

action reflected a significant relationship between prediction

error and memory among the adolescents (z = 5.2, p = 0.000;

Figure 2D), but not the adults (z = 1.3, p = 0.2). Thus, in adoles-

cents, but not adults, episodic memory for outcomes was

related to prediction errors. A similar effect was found for the

relationship between reinforcement learning and the positivity
bias in episodic memory across participants (Figures S1C

and S1D).

Prediction Error Signals in the Hippocampus in
Adolescents
A subset of 25 adolescents and 22 adults underwent fMRI while

performing the learning task (behavioral effects in the fMRI group

were the same as in the full behavioral sample; see Figures S1E–

S1I). To interrogate the brain systems underlying differences

in behavior between groups, we regressed prediction errors

against BOLD activity within each participant and compared

the groups in regions of a priori interest in the hippocampus

and the striatum (for whole brain results, see Table S2; for ana-

lyses of value in the ventromedial prefrontal cortex [vmPFC],

see Supplemental Information).

We found that prediction errors were correlated with BOLD

activity in the striatum in both groups, with no significant differ-

ences between them (see Figure S2D; Table S2). In the hippo-

campus, by contrast, adolescents had significantly greater pre-

diction error-related BOLD activity than adults (Figure 3C;

Figure S2C).

Given the behavioral link between reinforcements and mem-

ory in the adolescents, we investigated whether episodic mem-

ory was related to functional connectivity between the hippo-

campus and the striatum. We used a psychophysiological

interaction (PPI) analysis with the time series from a hippocampal

seed as the physiological variable (Figure 4A) and reinforcement

valence of the outcome event (correct > incorrect) as the psy-

chological variable. We found significant connectivity between

the hippocampus and the putamen in adolescents (but not
Neuron 92, 93–99, October 5, 2016 95



Figure 3. Greater Prediction Error-Related

Activationin theHippocampusinAdolescents

(A) Adolescents (n = 25) showed significant acti-

vation bilaterally in the hippocampus in two

clusters (left: family-wise error (FWE)-p < 0.01,

z = 4.15, peak [�16,�8,�20]; right: FWE-p < 0.03,

z = 3.23, peak [24, �20, �12]).

(B) Adults (n = 22) did not show above threshold

activation in the hippocampus.

(C) Direct comparisons between groups within the

hippocampus showed significantly greater acti-

vation in the left hippocampus in the adolescents

than in the adults (FWE-p < 0.03, z = 3.54, peak

[�16, �8, �22]). See Figures S2A–S2C.
adults) that was greater for correct than incorrect outcomes (z =

2.68, family-wise error (FWE)-p < 0.01, 155 voxels, peak [�16,

10, �6]; Figure 4B). We then extracted the interaction value for

each participant from the PPI and correlated this measure of

learning-related connectivity with an independent within-partic-

ipant behavioral measure of memory positivity bias (Figure 4C).

We found a significant correlation between connectivity during

learning and the extent to which memories for positive reinforce-

ment events were enhanced for the adolescents (r = 0.62, p =

0.000), but not the adults (r = 0.05, p = 0.84), and a significant dif-

ference in the correlations between the groups (comparison of

Fisher z transformed correlation coefficients z = 2.16, p = 0.03).

DISCUSSION

The negative implications of reward sensitivity in adolescents

have been well documented, but much less is known about the

possible adaptive side for learning. Our results show that adoles-

cents were better at learning from outcomes, outperforming

adults. We also found that in adolescents, but not adults, trial-

by-trial reinforcement learning is related to episodic memory

for reinforcement events, such that memory was better for sur-

prisingly positive versus negative outcomes. These behavioral

benefits were related to heightened prediction error-related

BOLD activity in the hippocampus and to stronger functional

connectivity between the hippocampus and the striatum at the

time of reinforcement. Finally, only in the adolescents, functional

connectivity between these learning systems was related to the

extent of bias toward better memory for positive reinforcement

events.

This is the first demonstration of a role for the hippocampus

in reinforcement learning in adolescents. Our results imply

that, as adolescents navigate through new life experiences,

learning from reinforcement is linked to how episodic mem-

ories are shaped and to the extent to which they are biased

toward encoding more of the good than the bad. This feature

of learning is important to consider in relation to decision mak-

ing because it speaks to the sorts of biases that adolescents

may encounter when they draw on prior experience to inform

current decisions.

It is important to note that the adolescents in our study were

not better at all types of learning; rather, the benefits were selec-

tive to reinforcement-based updating and reward-related

memory. Overall, episodic memory in the adolescents was not
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better than in adults, and there were no differences between

the groups in memory for just positive or just negative learning

events. Instead, the groups differed specifically in the strength

of the interaction between these two forms of learning.

These findings suggest that, in adolescents, there is less dif-

ferentiation between different forms of learning and their neural

substrates when compared with adults. One possible interpre-

tation of this finding is that it may be related, in part, to the

known delay in development of prefrontal control mechanisms

in adolescence (Somerville and Casey, 2010 for review).

Although it is not known precisely how the arbitration between

different learning and decision systems takes place in the adult

brain, it has been suggested that the prefrontal cortex may play

an important role (Daw et al., 2005; Poldrack and Packard,

2003). Indeed, an influential model of adolescent decision mak-

ing posits a dynamic imbalance between appetitive motiva-

tional brain systems, including the striatum, and inhibitory con-

trol systems in the prefrontal cortex (Galván, 2013; Somerville

and Casey, 2010). Our findings extend this framework and

show that the striatum may be just one learning system, along

with the hippocampus, that has relatively greater influence dur-

ing adolescence. Specifically, our findings suggest that the

functional development of midbrain dopaminergic reward sys-

tems and their connectivity with the striatum and the hippocam-

pus in adolescence is positioned to affect both strengthening of

reward-guided habits and actions, as well as episodic memory

for motivational events. Future studies will need to assess the

role of control and flexibility to identify whether prefrontal sys-

tems regulate the interactions between the striatum and the

hippocampus.

The current study aimed to evaluate the link between rein-

forcement learning and episodic memory by concurrently pre-

senting incidental trial-unique stimuli with reinforcement. An

important direction for future research will be to determine

whether these findings extend to goal-directed episodic en-

coding. In adults, striatal activity has been shown to relate to

goal-directed modulation of episodic memory (Han et al.,

2010). Prior work in adolescents has shown greater sensitivity

to reward-predictive cues in the striatum (Galván et al., 2006).

Together with the current findings, this suggests that goal-

directed cue processing in adolescents may elicit greater

cooperation between the hippocampus and the striatum and

better goal-directed encoding. This possibility remains to be

tested.



Figure 4. Functional Connectivity during

Learning Relates to Memory Positivity Bias

in Adolescents

(A) Time series within the hippocampus showed

functional couplingwith theputamen for the contrast

of correct > incorrect presented reinforcement.

(B) Interaction between the physiological and

psychological regressors in adolescents (limited

to a hypothesis-driven search within the bilateral

striatum; z = 2.68, FWE-p < 0.01, peak [�16, 10,

�6]).

(C) Result of the interaction term from the PPI

was extracted for each participant and correlated

with behavioral memory bias. There was an as-

sociation between learning-related connectivity

and the enhancement of memory for positive

reinforcement in the adolescents, but not in the

adults.
Another important question is how subregions of the striatum

contribute to learning and interact with the hippocampus. We

found prediction error-related BOLD activity in the ventral stria-

tum, as has been shown repeatedly (e.g., Bartra et al., 2013; Cli-

thero andRangel, 2014). This region is connectedwith the hippo-

campus (e.g., Haber and Knutson, 2010) and interacts with it

functionally (e.g., Kahn and Shohamy, 2013). However, our func-

tional connectivity analysis revealed activity in a separate region

in the putamen that correlated with the hippocampus. Research

in adults identified a similar region displaying connectivity with

the hippocampus during cue-value learning (Wimmer et al.,

2014). While functional connectivity in BOLD data does not

necessarily reflect anatomical connectivity, these findings raise

important questions for future work about the interacting circuits

supporting reinforcement learning and episodic memory in

adolescence.

Our findings are generally consistent with studies of episodic

memory in development (Ghetti et al., 2010; Ofen et al., 2012).

Previous research has shown that adolescents have adult-like

recognition memory (Ghetti et al., 2010), whereas younger chil-

dren have worse episodic encoding (Ghetti et al., 2010) and

retrieval (DeMaster et al., 2014; Lloyd et al., 2009). Findings

regarding developmental changes in the hippocampus have

been mixed. Studies of item recognition report no differences

in the hippocampus during development (Ofen et al., 2007).

But other studies indicate that changes in the hippocampus do

continue into adolescence (Daugherty et al., 2016; Lee et al.,

2014) and are related to differences in associative memory per-

formance in adolescents (Ghetti et al., 2010; DeMaster et al.,

2014).

Many new experiences occur during adolescence. Some

work suggests that, at least when looking back from adulthood,
adolescence is a time in which particu-

larly powerful and positive memories

are formed (Haque and Hasking, 2010;

Rubin and Berntsen, 2003; Thomsen

et al., 2011). Of course, adolescence is

also a time when psychopathology may

begin to emerge (Casey et al., 2015;
Ernst et al., 2009; Padmanabhan and Luna, 2014). Both per-

spectives emphasize the importance of learning from experi-

ences during this time of development. The heightened sensi-

tivity of striatal learning systems may put reward-seeking

actions into overdrive but can also confer a benefit in learning

from predictable, but variable, outcomes, as we show here.

Our findings demonstrate that this reinforcement sensitivity

has implications for what kinds of memories are formed in

adolescence and how these memories drive behavior.

EXPERIMENTAL PROCEDURES

All recruitment, screening, consent and assent, and testing procedures were

approved by the University of California, Los Angeles, Institutional Review

Board (IRB) and Columbia University IRB. For descriptions of experimental

materials and procedures, see Supplemental Experimental Procedures.
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two figures, and two tables and can be found with this article online at
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