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Episodic Memory Encoding Interferes with Reward Learning
and Decreases Striatal Prediction Errors
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Learning is essential for adaptive decision making. The striatum and its dopaminergic inputs are known to support incremental reward-
based learning, while the hippocampus is known to support encoding of single events (episodic memory). Although traditionally studied
separately, in even simple experiences, these two types of learning are likely to co-occur and may interact. Here we sought to understand
the nature of this interaction by examining how incremental reward learning is related to concurrent episodic memory encoding. During
the experiment, human participants made choices between two options (colored squares), each associated with a drifting probability of
reward, with the goal of earning as much money as possible. Incidental, trial-unique object pictures, unrelated to the choice, were overlaid
on each option. The next day, participants were given a surprise memory test for these pictures. We found that better episodic memory
was related to a decreased influence of recent reward experience on choice, both within and across participants. fMRI analyses further
revealed that during learning the canonical striatal reward prediction error signal was significantly weaker when episodic memory was
stronger. This decrease in reward prediction error signals in the striatum was associated with enhanced functional connectivity between
the hippocampus and striatum at the time of choice. Our results suggest a mechanism by which memory encoding may compete for
striatal processing and provide insight into how interactions between different forms of learning guide reward-based decision making.
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Introduction
Adaptive behavior depends on improving one’s decisions by
learning from past experience. For example, if we enjoyed a res-
taurant’s sushi many times in the past, we are likely to order it
again. We might also recollect the restaurant’s location and the
friends we ate with each time. In the laboratory, these two forms
of learning (reward learning and episodic memory) have each
been studied extensively in isolation. In more naturalistic expe-
rience, however, they necessarily overlap, raising questions about
the nature of such interactions.

Reward learning research has shown how choices are guided
by past associations between stimuli and rewards (Daw and
Doya, 2006; Schultz, 2006; Rangel et al., 2008). Typically, studies
examine how trial-by-trial outcomes update the value of stimuli

in simple repeated situations. Reward learning is thought to be
driven by reward prediction errors (RPEs), signaled by dopamine
neurons projecting to the striatum, a key locus of learning (Barto,
1995; Schultz et al., 1997; Sutton and Barto, 1998; Delgado et al.,
2000; Knutson et al., 2000; McClure et al., 2003; O’Doherty et al.,
2003; Steinberg et al., 2013).

A separate body of research has focused on the cognitive and
neural mechanisms of episodic memory (Eichenbaum and Co-
hen, 2001). In humans, episodic memory is typically tested by
presenting a series of stimuli, each appearing only once, and sub-
sequently testing participants’ memory for these episodes (for
review, see Paller and Wagner, 2002). Damage to the hippocam-
pus impairs episodic encoding (Eichenbaum and Cohen, 2001)
and in fMRI studies successful encoding is associated with acti-
vation in the hippocampus (e.g., Wagner et al., 1998; Brewer et
al., 1998; Staresina and Davachi, 2009).

How does episodic memory encoding interact with behavioral
and neural correlates of reward-based learning? Anatomically,
the supporting neural systems are interconnected at multiple lev-
els (Lisman and Grace, 2005; Shohamy and Adcock, 2010; Penn-
artz et al., 2011; Kahn and Shohamy, 2013). Functionally,
multiple studies have demonstrated negative “competitive” cor-
relations between the striatum and the hippocampus during
learning (e.g., Packard and McGaugh, 1996; Poldrack et al.,
2001), yet thus far there has been a lack of data connecting these
negative neural interactions to human behavior. Moreover,
emerging data also report positive correlations between activity
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in these neural systems during decision making and memory
(Peters and Büchel, 2010; Sadeh et al., 2011; Scimeca and Badre,
2012; Wimmer and Shohamy, 2012). Thus, many open questions
remain about the interactions between episodic memory and re-
ward learning and the implications of these interactions for
value-based decision making.

In this study, we examined whether and how encoding long-term
episodic memories relates to concurrent reward learning behavior
(model parameters and choices) and brain activity (fMRI correlates
of prediction error responses in the striatum) by adapting a well-
established reward learning task to include incidental episodic en-
coding. Our novel design provides trial-by-trial measures of reward-
guided choices and episodic memory encoding, allowing us to ask
questions about interactions between the cognitive and neural sys-
tems supporting these types of learning.

Materials and Methods
Participants
A total of 64 subjects participated in the study (32 in the scanner, 32
behaviorally only). Informed consent was obtained in a manner ap-
proved by the Columbia University Institutional Review Board. Subjects
were fluent English speakers with no self-reported neurological or psy-
chiatric disorders and normal or corrected-to-normal vision. Data from
three participants were excluded (one missed �20% of choices in the
reward learning task; two had errors in behavioral data collection), leav-
ing 61 subjects (30 scanned, 31 behavioral; 35 female; mean age: 22 years;
range: 18 –35 years).

The fMRI participants were paid $20 per hour for �3.5 h of participa-
tion, plus one-half of the nominal rewards earned during the experimen-
tal task. The behavior-only participants were paid $12 per hour for �1.5
h of participation, plus one-fifth of the nominal rewards earned during
the reward learning task.

For the group analyses, the fMRI and behavioral subjects were com-
bined, as the tasks were identical except for minor procedural differences
(noted below), and the combination of the groups allowed for a more
powerful and detailed characterization of individual differences.

Procedure
The experiment was conducted across two consecutive days of testing for
each subject (Fig. 1). The first day consisted of a reward learning task and
the second of a surprise episodic memory test.

Reward learning task (day 1). The reward learning task was based on a
classic, well-understood “bandit” reward learning task (e.g., Platt and
Glimcher, 1999; Frank et al., 2004; Samejima et al., 2005; Daw et al., 2006;
Behrens et al., 2007; Schönberg et al., 2007; Gershman et al., 2009). On
each trial, subjects selected one of two options and then received binary
monetary reward feedback (Fig. 1A). The two options were distinguished
by their color (blue or green). Subjects were instructed that each option
was associated with a different probability of reward that would change
slowly during the course of the experiment; their goal was to earn the
most money in the task by selecting on each trial the option they esti-
mated was most likely to yield a reward.

Choice- and trial-unique object pictures were presented in the center
of each option. Subjects were instructed that objects would be presented
but that the objects were not relevant to the monetary outcomes. Subjects
were familiarized with the reward learning task, including the incidental

Figure 1. Reward learning and memory task. A, In the reward learning task, participants made choices between two options (colored squares), each associated with a drifting probability of
reward, with the goal of earning as much money as possible. Reward learning models predict that feedback on trial t (e.g., a reward after choosing green) will influence choice behavior on trial t �
1. Incidental, trial-unique object pictures, unrelated to the reward learning task, were overlaid on each option. Inset, Example win probability sequence for 50 trials. B, A surprise memory test was
administered 1 d later. Participants were asked to determine whether the objects were old or new and to rate their confidence.
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objects in a short practice block, which was also repeated inside the
scanner.

On each trial, subjects had 2 s to choose between the blue and green
options by pressing a corresponding left or right button with their right
hand. The left–right location of the blue and green options was permuted
randomly from trial to trial. After the 2 s choice period, options remained
on the screen for an additional 0.5 s, followed by a blank 1 s interstimulus
interval. Then, subjects received “reward” or “miss” feedback for 1.75 s.
The $0.25 reward outcome was represented by an image of a quarter
dollar, and the $0.00 miss outcome was represented by a phase-
scrambled image of a quarter dollar. If no choice was made during the
choice period, no feedback was displayed and “Too late!” was presented
on the screen during the feedback period. A jittered fixation intertrial
interval preceded the next trial (fMRI: mean 3.5 s, range 1.5–13.5 s;
behavioral: mean 3 s, range 1.5–9.5 s). To signal trial onset, the fixation
cross switched from white to black 1 s before the next trial began.

Each of the two options was associated with a different drifting prob-
ability of monetary reward (Fig. 1A, inset). To encourage continual
learning, reward probabilities diffused gradually across the 100 task trials
according to Gaussian random walks with reflecting boundary condi-
tions at 20% and 80%. Two probability sequences were generated ac-
cording to this process, each containing a probability sequence for the
two options. Two additional sequences were created by reversing the
assignment of sequence to options, resulting in four sequences that were
counterbalanced across subjects. For each trial and for each subject, ob-
served binary reward and miss outcomes were derived from these under-
lying reward probability sequences.

Finally, as a control for the presentation of the objects during reward
learning, subjects completed another block of reward learning, but with-
out objects being presented. In this control block, shape stimuli repre-
sented options (a yellow circle and triangle). This block provided a
control for the effect of objects on reward learning and also provided
more behavioral and fMRI data for basic reward learning analyses. After
the reward learning task, participants were informed of their winnings.

The duration and distribution of intertrial intervals (null events) were
optimized for estimation of rapid event-related fMRI responses as calculated
using Optseq software (http://surfer.nmr.mgh.harvard.edu/optseq/). The
task was presented using MATLAB (MathWorks) and the Psychophysics
Toolbox (Brainard, 1997). The reward learning task was projected onto a
mirror above the MRI head coil.

Episodic memory test (day 2). Subjects returned to the laboratory and
completed a surprise memory test to measure subsequent memory for
the objects that had been incidentally presented during the reward learn-
ing task (Fig. 1B). The memory test was administered behaviorally. In the
memory test, subjects saw each of the 200 “old” objects from the reward
learning task (100 trials � 2 objects per trial) intermixed with 100 “new”
objects. The order of the old pictures was pseudo-randomized from the
reward learning task order, and old and new pictures were pseudo-
randomly intermixed. On each trial, a single object was presented above
the response options “old” and “new.” Subjects pressed the left or right
arrow key to indicate whether they thought that the picture was “old”
(seen during the reward learning task) or “new” (not previously seen). To
avoid any influence of option biases from the reward learning task on
subsequent memory responses at test, the objects were presented without
the blue and green option colors. Then subjects used the 1– 4 number
keys to indicate their confidence in the memory response on a rating
scale: “guess,” “pretty certain,” “very certain,” and “completely certain.”
The memory test responses had no time limit and included opportunities
for rest breaks to avoid fatigue.

Next, all subjects completed a written questionnaire consisting of
questions about choice strategies and attention during both tasks, as well
as whether during the reward learning task subjects thought that their
memory may be tested for the incidentally presented objects. Finally,
subjects were paid for their participation and their reward learning task
winnings.

The behavioral subgroup was tested in an experimental testing room.
The task was the same as for the fMRI subgroup, except that the behav-
ioral subgroup experienced 80 trials (yielding 160 “old” and 80 “new”
images in the memory test), a single pair of reward probability sequences

was used, option color was indicated by a transparent color overlay, and
the final control reward learning task (without objects) was not
administered.

Behavioral analysis
Analyses of the behavioral data were designed to test for potential inter-
actions between memory and reward learning. First, analyses were con-
ducted to verify, separately, that subjects used reward feedback to guide
their choices in the reward learning task and that subjects showed signif-
icant memory for the objects presented during reward learning. Next,
analyses were conducted to test whether and how episodic memory and
reward learning interacted.

Reward learning. Learning was analyzed using computational models,
following prior studies (e.g., Daw et al., 2006). To verify learning and
examine its form, we used computational models to attempt to explain
the series of choices in terms of previous events (for reviews of the meth-
odology, see O’Doherty et al., 2007; Daw, 2011). These included both
simple regression models (to test for local adjustments in behavior mak-
ing minimal assumptions about their form) and a Q-learning reinforce-
ment learning model (which uses a more structured set of assumptions to
capture longer-term coupling between events and choices).

In the regression analysis, we used a logistic regression model to ac-
count for each subject’s sequence of choices in terms of two explanatory
variables coding events from the previous trial: the choice made and
whether it was rewarded (both coded as binary indicators, implemented
in STATA 9.1; StataCorp) (Lau and Glimcher, 2005; Gershman et al.,
2009; Daw et al., 2011; Li and Daw, 2011). In a secondary analysis, pre-
dictor variables based on choice and reward on three preceding trials
were also included.

In the reinforcement learning analysis, we fit a Q-learning reinforce-
ment learning model to subject’s choice behavior (Sutton and Barto,
1998). This generated subject-specific model parameters and model fit
values (log likelihood). The model also allowed us to compute trial-by-
trial value and reward feedback variables for use in behavioral analyses of
subsequent memory and neural analyses of parametric fMRI responses.

The reinforcement learning model learns to assign an action value to
each option, Q1 and Q2, according to previously experienced rewards.
These are assumed to be learned by a delta rule: if option c was chosen
and reward r (1 or 0) was received, then Qc is updated according to the
following:

Qc,t � Qc,t�1 � ���c,t (1)

�c,t � rt � Qc,t�1 (2)

where the free parameter � controls the learning rate. Option values were
initialized with values of 0.5.

Given value estimates on a particular trial, subjects are assumed to
choose between the options stochastically with probabilities P1 and P2

according to a softmax distribution (Daw et al., 2006):

Pc,t � exp���Qc,t � �I�c,ct�1			 (3)

The free parameter � represents the softmax inverse temperature, which
controls the exclusivity with which choices are focused on the highest-
valued option. The model also included a free parameter �, which, when
multiplied by the indicator function I(c,ct � 1), defined as 1 if c is the same
choice as that made on the previous trial and zero otherwise, captures a
tendency to choose (for positive �) or avoid (for negative �) the same
option chosen on the preceding trial (Lau and Glimcher, 2005; Schön-
berg et al., 2007). Because the softmax is also the link function for the
logistic regression model discussed above, this analysis also has the form
of a regression from Q values onto choices (Lau and Glimcher, 2005;
Daw, 2011), except here, rather than as linear effects, the past rewards
enter via the recursive learning of Q, controlled, in nonlinear fashion, by
the learning rate parameters.

Parameters were optimized for each subject using an optimization
routine, which included 20 starting points to avoid local minima. To
generate per-subject, per-trial values for chosen value and RPE (for sub-
sequent memory and fMRI analyses), the model was simulated on each
subject’s sequence of experiences. The model was simulated using the
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median across-subjects best-fitting learning rate, softmax, and perse-
veration parameters from the reinforcement learning model. This is be-
cause individual parameter fits in tasks and models of this sort tend to be
noisy, and regularization of the fit parameters across subjects tends to
improve a model’s subsequent fit to fMRI data (following previous work:
Daw et al., 2006; Schönberg et al., 2007; Wimmer et al., 2012). Addition-
ally, we simulated performance to search for parameters that maximized
optimal choices in the reward learning task. Simulations used 100 runs
each of 100 different combinations of learning rates (0.01–1) and soft-
max inverse temperatures (0.1–10.0), with perseveration set at 0.10 and
win probability drifts as used in the actual participant population.

Episodic memory. To measure episodic memory, we computed cor-
rected hit rates: the difference between the proportion of hits (old items
identified as old) and false alarms (new items incorrectly identified as
old). The use of corrected hit rate reduces the influence of response biases
that can inflate or reduce raw hit rate. “Guess” responses were removed
from this analysis to focus our across-subject analyses on responses that
are more consistent with episodic recognition rather than familiarity
(following standard procedure in episodic memory studies: e.g., Wagner
et al., 1998; Otten et al., 2001).

For within-subject trial-by-trial memory analyses, as memory hit rates
were relatively low and because the use of the graded confidence rating
scale may differ between subjects, it was necessary to differentiate be-
tween confident episodic responses and lower-confidence responses.
Thus, we defined an individualized threshold separating lower-
confidence responses from higher-confidence responses by examining
the reliability of responding at different confidence levels (Parks, 1966).

In particular, we identified for each subject the confidence level above
which “old” responses were more reliable than guessing (d
) (Parks,
1966). When d
 is below zero, the proportion of “new” objects that were
incorrectly identified as “old” was greater or equal to the proportion of
“old” objects that were correctly identified as “old.” After excluding
“guess” responses, we focused on the first confidence level above guess-
ing (“pretty certain”). For a given subject, if d
 at this level was below
zero, we excluded data from this level and examined the next level. If d
 at
this level was at or above zero, we then computed d
 across this level and
all higher levels of confidence. If this measure was above zero, we in-
cluded all of these responses. This approach identifies for each subject the
lowest confidence threshold above which memory responses, considered
as a group of responses all above a given level, are reliable. Using this
method, the data from a majority (66%) of subjects included all of the
“pretty certain” and above responses and all but one of the remaining
subjects included all of the “certain” level and above responses. Conser-
vatively, miss responses were included at all confidence levels.

To ensure the inclusion of sufficient memory events to yield robust
estimates in behavioral and fMRI analyses, we excluded subjects with
�15 successful higher-confidence memory events in total. This led to the
exclusion of 5 subjects (all from the fMRI subgroup), leaving a total of 56
subjects for the analyses of memory and interactions of memory and
reward learning.

For trial-by-trial reward learning and memory analyses, we created a
single memory success variable. The memory variable was derived from
the two potentially remembered stimuli on each trial (the incidental
objects presented in chosen and nonchosen options). Memory responses
for chosen and nonchosen options were combined (memory for chosen
objects related to memory for nonchosen objects: regression analysis, see
Results). The combined memory variable also increased our ability to
detect any interactions between memory and reward learning. Separately
for the chosen and nonchosen options, successfully remembered items of
subject-defined higher confidence (as defined above) were coded as 1,
remembered items of subject-defined lower confidence were coded as 0,
and all forgotten items were coded as �1. Memory values for chosen and
nonchosen options were additively combined, yielding a summed mem-
ory regressor with values ranging from �2 to 2. In the description of
results, we use “remembered” and “forgotten” to refer to the positive and
negative values of this memory measure. Trials with positive values of the
combined memory measure (which include either one or two higher-
confidence remembered objects) will be referred to as “remembered.”
Trials with negative values of the combined memory measure (which

include either one or two forgotten objects) will be referred to as
“forgotten.”

Interactions between episodic memory and reward learning: across-
participant analyses. Our primary analyses focused on the interaction
between memory encoding and reward learning. Across subjects, we
tested the correlation between memory performance (corrected hit rate)
and the reinforcement learning model learning rate. We also tested for a
correlation between memory performance and reinforcement learning
model fit (log likelihood). For model fit, as log likelihood is summed
across trials, values from the 80 trial behavioral task were normalized to
reflect 100 trials. As a supplemental task performance analysis, we tested
for a correlation between memory performance and the mean reward
probability for the subject’s chosen options.

Interactions between episodic memory and reward learning: trial-by-trial
within-participant analyses. We used the choice-predicting logistic re-
gression described above, which contains terms for reward and choice
(on trial t, t � 1, and t � 2) as predictors of subsequent choice (on trial t
� 1). We added to this model an interaction of the summed memory
variable and reward (both on trial t). This interaction can be used to test
whether reward has a stronger or weaker influence on subsequent choice
on trials when incidental objects are successfully remembered.

Additionally, in this regression model, we tested for an interaction
between memory on still earlier trials and reward learning. Initial mem-
ory analyses indicated that prior trial memory strongly predicted current
trial memory (and conversely that prior trial unsuccessful memory pre-
dicted unsuccessful memory) (t(53) � 12.53, p � 0.001). Given this cor-
relation, we reasoned that the overall involvement of memory systems
may have been changing slowly throughout the task. This fluctuating
memory engagement level would be revealed only noisily by memory for
objects on a particular trial. To address this possibility, we included pre-
dictors for previous trials’ memories, which under these conditions (by
virtue of being independent samples of the ongoing state of memory
engagement) might interact with reward learning, over and above the
current trial’s memory. The logistic regression model included two addi-
tional memory and reward interaction regressors to capture any prior trial
memory effects. Specifically, memory on prior trials (trial t � 1 and trial t �
2) was interacted with reward (trial t). If a response was not made on a
preceding trial, the prior trial reward, memory, and interaction regressors
were set to zero. In a more conservative follow-up analysis, we restricted
analysis to trials in which both objects were either remembered or forgotten.

Finally, to ensure that effects were not due to differences between
subgroups of subjects (behavioral or fMRI), all regressors were interacted
with a group variable, and these interactions were included in the regres-
sion analyses.

Control analyses. We further tested whether any interactions between
memory and reward learning could be explained by other variables that
may relate to attention. To test whether current memory formation in-
fluenced current choice, an additional model was estimated that included
the influence of memory on the current choice (trial t � 1) interacted
with reward (trial t). Next, to examine attentional measures on the prior
trial (trial t), separate models were estimated that tested whether control
variables interacted with reward and decreased the significance of a
memory by reward interaction. Specifically, we tested a binarized mea-
sure of fast versus slow choice reaction times (Luce, 1986) and effects of
reaction time controlling for choice probability and entropy.

We also examined several other variables that might, analogous to
reaction time, serve as markers indicating attentional engagement. In
separate models, we tested whether task periods with higher versus lower
reward rates over recent trials (quantified by the number of rewards
received over the prior five trials) or higher versus lower underlying
maximum win probability, interacted with reward or decreased the sig-
nificance of a memory by reward interaction. Finally, an additional
model was estimated that replaced the subject’s memory measure in all
main effects and interactions with an across-subjects memory measure:
each object’s mean encoding probability across the group minus the
subject’s own contribution to the mean.

We also tested the related question of whether memory formation was
influenced by reward learning. Using random-effects regression, we
tested the correlation between memory and reward. In additional mod-

14904 • J. Neurosci., November 5, 2014 • 34(45):14901–14912 Wimmer et al. • Memory Interacts with Reward Learning



els, we tested the correlation between memory and RPE or choice value.
RPE and choice value were computed from the reinforcement learning
model, using the median across-subjects parameter fits.

fMRI data acquisition
Whole-brain imaging was conducted on a 3.0T Phillips MRI system at
Columbia University’s Program for Imaging and Cognitive Sciences, us-
ing a SENSE head coil. Head padding was used to minimize head motion;
no subject’s motion exceeded 2 mm in any direction from one volume
acquisition to the next. Functional images were collected using a gradient
echo T2*-weighted EPI sequence with BOLD contrast (TR � 2000 ms,
TE � 15 ms, flip angle � 82, 3 � 3 � 3 mm voxel size; 45 contiguous axial
slices). For each functional scanning run, five discarded volumes were
collected before the first trial to allow for magnetic field equilibration.
Four functional runs of 232 TRs (7 min and 44 s) were collected, each
including 50 trials. Following the functional runs, structural images were
collected using a high-resolution T1-weighted MPRAGE pulse sequence
(1 � 1 � 1 mm voxel size).

fMRI data analysis
Preprocessing and data analysis were performed using AFNI (Cox, 1996)
and Statistical Parametric Mapping software (SPM8; Wellcome Depart-
ment of Imaging Neuroscience). Functional images were coregistered
manually using AFNI; the remainder of the analysis was completed in
SPM. Images were realigned to correct for subject motion and then spa-
tially normalized to the MNI coordinate space by estimating a warping to
template space from each subject’s anatomical image and applying the
resulting transformation to the EPIs. Images were resampled to 2 mm
cubic voxels, smoothed with an 8 mm FWHM Gaussian kernel, and
filtered with a 128 s high-pass filter. Data collected for one subject during
the 2011 Virginia earthquake were inspected with independent compo-
nent analysis as implemented in FSL’s MELODIC (Beckmann and Smith,
2004) to ensure that no artifacts were introduced by the earthquake.

fMRI model regressors were convolved with the canonical hemody-
namic response function and entered into a GLM of each subject’s fMRI
data. The six scan-to-scan motion parameters produced during realign-
ment were included as additional regressors in the GLM to account for
residual effects of subject movement. Linear contrasts of the resulting
SPMs were taken to a group-level (random-effects) analysis. We report
results corrected for family-wise error (FWE) due to multiple compari-
sons (Friston et al., 1994). We conduct this correction at the peak level
within small-volume ROIs for which we had an a priori hypothesis or at
the whole-brain cluster level. For planned analyses in the hippocampus,
based on a previous report of reward and memory interactions (Adcock
et al., 2006), we defined 6 mm radius spherical ROIs centered at (right,
anterior, superior: �20, �10, �18) and (20, �12, �18). In the striatum,
peak RPE activation across the reward learning task and control task
without objects was used to define bilateral 6 mm radius spheres in the
striatum (see Results). These ROIs were combined into hippocampal or
striatal ROI masks for small-volume correction. For display purposes, we
render all small-volume-corrected (SVC) significant activations at p �
0.005. All voxel locations are reported in MNI coordinates, and results
are displayed overlaid on the average of all subjects’ normalized high-
resolution structural images.

To examine interactions between memory and reward learning, mir-
roring the analyses of the behavioral data, analyses of the fMRI data
proceeded in two steps: (1) we tested separately for effects of reward
learning and memory encoding; and (2) we conducted several analyses
that examined how these effects related to one another.

Reward learning. A GLM tested for BOLD correlates of trial-by-trial
reinforcement learning variables. Reinforcement learning model param-
eters (learning rate, softmax, perseveration) were derived from the me-
dian fit across subjects (for rationale, see above). For fMRI analyses, these
were derived from a fit across the reinforcement learning task and the
control task behavior in the fMRI subgroup. For the reward learning
localization analysis only, fMRI models included data from both the task
with objects and the control task with no objects. In addition to control
regressors during choice and feedback (0 s duration), the model included
a parametric regressor (modulating the control regressor) at the time of

choice for the value of the chosen option (0 s duration). We used the
probability of the chosen action from the softmax equation, which serves
to normalize the value against that of the nonchosen option (Daw et al.,
2006; Boorman et al., 2009). At the time of feedback, the model included
a regressor for RPE (0 s). To provide more statistical power over which to
estimate neural correlates of choice value and RPE, we estimated this
model over functional data from both the reward learning task and the
following control reward learning task without objects.

Additionally, to test whether neural correlates of prediction error ex-
pressed both algebraic components of the prediction error signal, reward
and choice value, we estimated an additional GLM. In this model, the
prediction error regressor was replaced by two parametric regressors at
the time of feedback, choice value and reward (Behrens et al., 2008; Li and
Daw, 2011; Niv et al., 2012).

Episodic memory. The second GLM tested for correlates of successful
memory encoding. In addition to control regressors during the choice
and feedback period (2.5 and 0 s duration, respectively), this GLM in-
cluded a parametric regressor during the choice period that represented
the summed memory for chosen and nonchosen items, as described
above (2.5 s duration). This model is equivalent to a first-level model
with two separate regressors modeling memory for chosen and noncho-
sen items, where the separate effects are combined additively as a second-
level contrast.

Interactions between episodic memory and reward learning. To test how
episodic memory interacted with reward learning, our primary GLM
analysis tested for neural signals reflecting an interaction of memory and
RPE. The interaction was computed by multiplying the summed mem-
ory regressor by the RPE regressor. This model included control regres-
sors at choice and feedback (0 s duration) and three parametric
regressors during the feedback period: RPE interacted with memory,
RPE, and memory. As a control for across-subjects variability in rein-
forcement learning parameters, we additionally conducted this analysis
using individually fit parameters. To visualize the effect of memory on
RPE, we estimated an additional GLM where the memory variable only
included trials where both objects were remembered or where both ob-
jects were forgotten. We extracted � coefficients from this model and
computed a contrast for remembered and forgotten trials.

Additionally, to further explore the interaction between memory and
prediction error, we tested whether memory related to the reward and
choice value components of the prediction error signal. We estimated an
additional GLM where the RPE and its interaction with memory, at
feedback time, were replaced by four parametric regressors modeling
reward, choice value, and both variables’ interactions with memory.

Cross-region interactions
To examine memory-related functional connectivity between the hip-
pocampus and the striatum, we performed a psycho-physiological inter-
action (PPI) analysis (Friston et al., 1997). As a seed region for the PPI
analysis, we focused on the hippocampal region showing the strongest
response to memory, which overlapped with the a priori left hippocam-
pus ROI (�20, �10, �18). Signal was extracted from a 6 mm radius
sphere around this a priori coordinate. The PPI analysis tested for regions
showing greater functional correlation with the timecourse of activity in
the hippocampus (the physiological variable) depending on memory
success (the psychological variable).

To compute the PPI, the timecourse of activation from the hippocam-
pus was extracted and deconvolved. This timecourse was multiplied by
the memory indicator (choice period, 2.5 s duration). Because the PPI
uses a simple contrast of conditions, we binarized the memory measure,
contrasting trials with at least one remembered object versus trials with
no remembered objects (of the two objects presented on each choice).
We used this memory breakdown because it yielded an approximately
equal number of trials in each bin, making it optimal for contrast esti-
mation. This regressor was then convolved with the hemodynamic re-
sponse function to yield the hippocampus by memory interaction
regressor. The PPI GLM included the interaction regressor, the memory
regressor, and the unmodulated hippocampus timecourse regressor.

To examine and compare functional connectivity at choice and feed-
back, two control PPI models were estimated. First, a model was esti-
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mated to test memory-related connectivity during the reward feedback
period (1.75 s). Second, to ensure that any differences in connectivity
between the choice and feedback periods were not simply due to an
increased power to detect effects for the longer-duration choice model
(2.5 s vs 1.75 s), a control choice period model was estimated where the
choice regressor matched the duration of the feedback regressor (1.75 s).

Results
Reward learning behavioral performance
Participants (n � 61) engaged in a two-alternative reward learn-
ing task, with the goal to earn as much money as possible. Before
turning to our primary analyses testing the interaction between
memory and reward learning, we first verified that participants
used reward feedback to guide their choices. Using logistic regres-
sion, we found that reward for a choice predicted the subsequent
choice (0.649  0.034, mean  SEM; t(43) � 19.11, p � 0.001).
Similar effects were seen for reward predicting choice on up to
two further preceding trials (p values �0.001), indicating that
participants’ choices overall were strongly influenced by the his-
tory of rewards they received. We also fit a reinforcement learn-
ing model to choice behavior (Sutton and Barto, 1998). Mean
learning rate was 0.53  0.04, and mean softmax inverse temper-
ature was 7.06  1.62. These mean values are similar to prior
reports in this type of task (e.g., Gershman et al., 2009) and are
also near optimal parameter values estimated via simulation
(learning rate range � 0.60 – 0.80, softmax range � 4 –7).

Episodic memory behavioral performance
The memory test revealed significant subsequent memory for the
objects that appeared within choice options, despite the fact that
these objects were unrelated to the participants’ goal of maximiz-
ing their earnings. Over all participants, the mean corrected
memory rate, excluding “guess” responses, was 19.70  2.2%
(t(60) � 8.93, p � 0.001 vs zero). Excluding individuals with poor
memory performance (for all analyses going forward; see Mate-
rials and Methods), the mean corrected memory rate was 21.8 
2.2% (correct “old” response hit rate: 56.2  2.1%; incorrect
“old” response false alarm rate: 34.4  2.4%). The hit rate did not
differ between the first and second half of the reward learning task
(56.3% vs 56.1%, respectively, p � 0.96). The distribution across
confidence ratings for “old” objects was as follows: “guess” �

20.5  3.2% of items; “pretty certain” � 30.6  2.7%; “very
certain” � 24.7  2.2%; “completely certain” � 29.5  4.2%.
Memory responses were distributed across the 1, 0, and �1 bins:
high-confidence hits: 65.2  3.5 (range 20 –120); low-confidence
hits: 28.3  3.1 (0 –101); misses: 80.4  3.4 (20 –142).

Episodic memory negatively interacts with reward learning
Across-participants analyses
To explore potential interactions between memory formation
and reward learning, we first tested the relationship between
memory performance and reinforcement learning model learn-
ing rate and model fit. We found that memory performance (cor-
rected hit rate) was negatively correlated with reinforcement
model learning rate (r � �0.30, p � 0.03). This correlation indi-
cates that participants with better memory performance were
slower to update their choices based on reward feedback. Applying a
Box-Cox transformation (Box and Cox, 1964) to the learning rate
distribution yielded the same result (r � �0.31, p � 0.03). Memory
performance was not significantly related to softmax inverse tem-
perature (a measure of choice “noisiness”; p � 0.14).

In addition, we found that memory performance was nega-
tively correlated with reinforcement learning model fit (log like-
lihood) (r � �0.36, p � 0.006; Fig. 2A). The correlation with
model fit indicates that the behavior of participants with better
memory was less well described by a standard reinforcement
learning model that predicts choices based on values learned
from reward feedback. Similarly, we found a negative correlation
between memory performance and a measure of reward learning
performance not derived from model fits: the mean reward prob-
ability of the participant’s chosen options across the task (r �
�0.30, p � 0.03).

Trial-by-trial within-participant analyses
To address the critical question of how memory interacts with
reward learning at a trial-by-trial level, within participants, we
augmented the logistic regression model of the influence of re-
ward (trial t) on subsequent choice (trial t � 1) with an additional
variable capturing the interaction of reward (trial t) and memory
encoding success for the objects seen on that trial. We found a
significant negative interaction between successful memory en-

Figure 2. Episodic memory is negatively correlated with reward learning, both across and within participants. A, Negative correlation between memory and reinforcement learning model fit (log
likelihood) across participants. B, Choice prediction by reward and the interaction of memory and reward on a trial-by-trial basis within participants: Reward on the prior choice (trial t) positively
predicts subsequent choice (trial t � 1) (blue). The interaction of memory and reward had a negative influence on subsequent choice (purple). This suggests that, on a trial-by-trial basis, better
memory is associated with worse reward-based updating. *p � 0.05. **p � 0.01. C, Interaction of memory and reward on choice: the net effect of reward on choice is plotted separately for trials
with remembered objects and forgotten objects.
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coding and the influence of reward on subsequent choice (full
regression, t(36) � �2.06, p � 0.04; Fig. 2B). The same effect was
found when restricting the analysis to trials when the objects were
either both remembered or both forgotten (t(36) � �2.31, p �
0.03; Fig. 2C), and this effect did not relate to differential effects
for memory for chosen versus nonchosen objects (p � 0.51).
Importantly, the negative interaction between memory and re-
ward was replicated in a separate behavioral experiment (n � 20),
where the learning and test sessions were performed on the same
day (t(10) � �2.75, p � 0.006). The finding that reward on trials
with successful memory formation had a weaker influence on the
subsequent choice suggests that episodic encoding competes with
learning from the reward received later on the same trial.

A different possibility is that object encoding competes with
the decision task at the level of choice, rather than reward learn-
ing. To test this possibility, we examined whether reward inter-
acted with episodic memory for the objects viewed concurrent
with the choice (trial t � 1) rather than on the same trial as the
reward. However, there was no such interaction (p � 0.52), al-
though the prior trial memory effect remained significant (p �
0.04). The lack of a memory effect for the object viewed concur-
rent with choice suggests that the memory–reward interaction is
not related to modulations in reward learning task engagement
or differential processing (perhaps due to visual attention) of
object versus choice stimuli.

Control analyses
Nonetheless, we conducted several control analyses to further
investigate whether the negative memory–reward effect was re-
lated to measures of attention on the previous trial. Reasoning
that reaction time might reflect variations in attention (e.g., Luce,
1986), we tested whether several reaction time proxies for atten-
tion either mimicked or explained away the negative memory by
reward interaction. We found that reaction time did not interact
with reward (p � 0.61), whereas the memory–reward effect re-
mained significant (p � 0.04). We next removed prominent ef-
fects of choice difficulty (entropy) and choice probability from
reaction time. We again found no relationship between cor-
rected reaction time and reward (p � 0.40), whereas the memory–
reward effect remained significant (p � 0.04).

In additional control analyses, we tested several reward learn-
ing task measures that may also relate to differential attention.
We found that better versus worse recent performance in the
reward learning task did not interact with reward (p � 0.57), nor
did periods when the underlying maximum win probability was
higher versus lower (p � 0.96); the memory–reward effect re-
mained significant in both cases (p values � 0.04). Finally, we
replaced each participant’s memory values with the across-
participant mean memorability of an object, a proxy measure of
particularly memorable and salient objects. In this model, we
found no significant memory by reward interaction (p � 0.26),
suggesting that salient objects were not driving the interaction
effect. The null results of these control analyses suggest that the
memory–reward effect is not related to attention to sensory
events but may instead be related to internal selection processes
prior to or concurrent with reward feedback on the preceding
trial, such as maintaining a working memory trace of the chosen
option or “credit assignment” of the outcome to the choice.

Reward learning effects on memory
Having established that subsequent memory performance was
associated with differences in reward learning, we next tested
whether events during reward learning predicted subsequent

memory. First, we observed a significant negative correlation be-
tween reward on a trial and subsequent memory for objects seen
on that trial (t(54) � �2.68, p � 0.008). A similar but weaker
negative correlation was observed between memory and RPE
(t(54) � �2.08, p � 0.04). A model including the separate com-
ponents of RPE (reward and choice value) showed no significant
effect of choice value on memory (p � 0.89) but a significant
effect of reward (p � 0.009). The magnitude of the negative
correlation between reward and memory was similar across cho-
sen and nonchosen items (chosen: t(54) � �1.75, p � 0.08; non-
chosen: t(54) � �2.17, p � 0.03). Additionally, we found that
memory was enhanced when an object was presented in a chosen
versus nonchosen option (chosen hit rate, 68.0  2.8%; noncho-
sen hit rate, 63.9  3.1%; t test, t(55) � 3.34, p � 0.001). The
memory benefit for chosen options did not come at the cost of
memory for nonchosen options on the same trial: memory for-
mation was highly correlated between options (t(54) � 5.62, p �
0.001), supporting the use of a combined memory measure in the
memory and reward learning interaction analyses. Choice reac-
tion time was positively but nonsignificantly related to episodic
memory (p � 0.13).

Finally, we tested for differences between the behavioral and
fMRI subgroups. We found that the direction of the main effects
and memory interactions in the choice prediction analysis were
the same in both groups but that, when directly compared, the
participants in the behavioral group showed a weaker influence
of prior reward on choice (full regression, t(36) � �4.99, p �
0.001). The behavioral subgroup also exhibited better memory
performance (26.8% vs 15.7%; t test, t(54) � 2.68, p � 0.01).

Striatal correlates of RPE and hippocampal correlates of
episodic memory
We conducted two initial GLM analyses to localize BOLD re-
sponses (henceforth, “activity”) correlated with the main effects
of reward and successful memory formation. First, we localized
regions with activity correlated with a trial-by-trial RPE time-
series extracted from computational model fits (using all n � 30
fMRI participants). Replicating prior results, we found that RPE
correlated with activity in the striatum at feedback (right puta-
men: z � 4.62 (30, �10, �6); left putamen: z � 4.14 (�30, �10,
6); p � 0.0001 uncorrected, for ROI localization; Fig. 3A). The
RPE correlation peaked in more posterior regions of the ventral
putamen than commonly observed (e.g., McClure et al., 2003;
Schönberg et al., 2007; however, for similar posterior localiza-
tion, see O’Doherty et al., 2003; Dickerson et al., 2011). The ven-
tral putamen prediction error correlation was observed both in
the reward learning task with pictures and the subsequent control
task without pictures; and outside of the putamen, we did not
find more anterior striatal correlates, even at a liberal threshold of
p � 0.01 uncorrected. Further, in a different GLM, we separated
the two algebraic components of RPE (reward and choice value)
to test whether the striatum positively correlates with reward and
negatively correlates with choice value (Behrens et al., 2008; Li et al.,
2011; Niv et al., 2012). We found that activity in the right posterior
striatum indeed responded to each component (reward: z � 3.80
(30, �12, �6), p � 0.001 uncorrected; chosen option value: z �
�3.21 (26, �8, �10), p � 0.001 uncorrected; Fig. 3B).

Next, we localized regions with activity correlated with suc-
cessful memory formation, focusing on those participants with
evidence for significant memory overall (n � 25; see Materials
and Methods). Replicating prior results, subsequent memory was
associated with activation in the bilateral hippocampus during
encoding (left: z � 3.22 (�20, �12, �16), right: z � 3.08 (22,
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�12, �22); p � 0.05 SVC; Fig. 3C). We additionally found that
activity in bilateral object-responsive lateral occipital cortex
(Grill-Spector et al., 2001) correlated with subsequent memory
(z � 5.68 (34, �90, 24); z � 5.20 (�34, �88, 18); p � 0.05
whole-brain FWE-corrected (Table 1)).

Memory formation negatively interacts with the striatal
RPE signal
Behaviorally, we found evidence for negative effects of episodic
memory encoding on reward learning; thus, our primary fMRI
analysis focused on testing where and when this negative interac-
tion may occur. As memory interacted with the use of reward
feedback in guiding subsequent choices, we hypothesized that
memory might be associated with a decrease in the striatal re-
sponse to reward.

To test whether the correlation with RPE in the striatum dif-
fered as a function of episodic memory formation, we first exam-
ined the interaction of memory and RPE. We indeed found a
significant negative interaction of memory and RPE in the stria-
tum (z � �3.75 (26, �6, �4), p � 0.01 SVC; Fig. 4A). The
negative interaction was localized to the region of the striatum
that showed the strongest correlation with RPEs during learning,
the ventral putamen. The same results held when using individ-
ually fit reinforcement learning parameters (z � 3.49, p � 0.05
SVC). This result indicates that activity was significantly more
correlated with RPEs on trials when incidental stimuli were for-
gotten versus when they were remembered. Indeed, � coefficients
extracted from the ventral putamen suggest that the correlation
with RPE was reduced to near zero on trials with only remem-
bered objects (Fig. 4B).

Figure 3. RPE correlates in the striatum and subsequent memory correlates in the hippocampus. A, Activation in the striatum during feedback correlated with RPE. B, The breakdown of RPE
responses into choice value and reward components in the right ventral putamen. C, Activation in the hippocampus during choice correlated with subsequent memory (images thresholded at p �
0.005 uncorrected for display).

Table 1. fMRI results

Contrast Region Right Anterior Superior z-score Voxels p value

RPE Right putamen 30 �10 �6 4.62 329 �0.001 uncorrected
Left putamen �30 �10 �6 4.14 965 �0.001 uncorrected

Memory Left hippocampus �20 �12 �16 3.22 47 �0.05*
Right hippocampus 22 �12 �22 3.08 97 �0.05*
Right LOC 34 �90 24 5.68 1873 �0.05**
Left LOC �34 �88 18 5.2 5521 �0.05**

Memory � reward interaction Right putamen 26 �6 �4 3.75 40 �0.01*
Memory PPI Right putamen 34 �2 �6 3.57 85 �0.05*

LOC, Lateral occipital complex.

*SVC FWE-corrected.

**Whole-brain FWE-corrected.

Figure 4. Memory and RPE interaction in the right ventral striatum. A, Activation in the striatum correlated with the interaction of memory and RPE. In the right putamen, activation was
significantly more correlated with RPE on trials where incidental stimuli were forgotten ( p � 0.05 SVC; image thresholded at p � 0.005 uncorrected for display). B, Depiction of the memory and
RPE interaction extracted from the right ventral putamen ROI shown in A (for display purposes only). C, The breakdown of the interaction into the choice value and reward components of RPE in the
same ROI.
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To examine this interaction in more detail, we conducted a
separate GLM analysis where RPE was replaced with its reward
and choice value components. We found that memory interacted
with each variable in the expected direction in the striatum:
memory by reward, z � �3.14 (26, �6, �8), p � 0.05 SVC;
memory by choice value, z � 3.00 (26, �8, �2), p � 0.05 SVC
(Fig. 4C). The separate effects on reward and choice value suggest
that memory encoding success related both to the sensory pro-
cessing of reward feedback as well as to the internal representa-
tion of choice value. Overall, the negative interaction of memory
and RPE shows that on trials with successfully remembered stim-
uli the striatal response corresponded less closely to RPEs drawn
from the Q-learning model, whereas responses during choice
were unaffected. This difference in feedback processing could
underlie our behavioral finding of a decreased influence of re-
ward on choice when incidental stimuli are successfully encoded.

Finally, we examined the effect of memory on choice value at
the time of choice instead of at feedback. Although both the right
ventral putamen (p � 0.05, SVC) and the ventromedial PFC (p �
0.0001, uncorrected) positively correlated with choice value, we
found that memory encoding was not related to the choice value
correlation in these regions (even at a relaxed threshold of p �
0.01, uncorrected).

Memory formation increases hippocampal–striatal
connectivity
To explore the negative interaction between memory and RPE,
we tested whether hippocampal–striatal connectivity was related
to successful memory formation. We conducted a PPI testing for
a greater correlation between hippocampal activation and striatal
activation on trials with remembered versus forgotten objects
focusing on the region of the left hippocampus, which exhibited
the strongest memory correlation, and the region of the right
ventral striatum negatively correlated with the interaction of
memory and RPE.

We found that better memory was associated with an increase
in correlation between hippocampal and striatal activation (right
ventral putamen: z � 3.67 (34, �4, �6), p � 0.05 SVC; Fig. 5).
This increase in connectivity occurred at the time of choice, but
not later in the trial at the time of reward feedback. At feedback, we
found no memory-related difference in hippocampal–striatal corre-
lations, even at a relaxed statistical threshold (p � 0.01 uncor-
rected). At choice, no regions outside the striatum survived
whole-brain correction, but a more anterior region of the ventral

striatum showed a similar effect as the
right putamen (z � 4.75 (8, 4, �2), p �
0.0001 uncorrected). Our finding that
hippocampal–striatal connectivity was
positively related to memory suggests that
the interfering effects of memory formation
on RPE signaling may originate in hippocam-
pal memory encoding processes.

Discussion
The present results demonstrate interac-
tions between reward learning and episodic
memory. We found a negative interaction
between reward-based updating of choices
and memory for details about the choice
options. These results indicate that epi-
sodic memory encoding can trade off with
the use of trial-by-trial outcomes to guide
choices during learning. This trade-off
was evident in behavior, both within and

across participants, as well as in the representation of RPEs in the
striatum. These results suggest that, when receiving rewards, bet-
ter episodic memory for the events preceding the reward may be
associated with worse reward learning.

Our findings advance our understanding of memory and re-
ward learning in several ways. First, our results increase the un-
derstanding of how seemingly separate forms of learning
influence each other and work together to guide behavior. The
demonstration that episodic memory and reward learning do not
operate in isolation is broadly consistent with an emerging rec-
ognition of the importance of interactions between multiple cog-
nitive and neural processes in both learning and decision making
(Doya, 1999; Poldrack and Packard, 2003; Daw et al., 2005; Pen-
nartz et al., 2011; Delgado and Dickerson, 2012; Shohamy and
Turk-Browne, 2013), extending the traditional focus in systems
and cognitive neuroscience on mapping distinct cognitive pro-
cesses onto independent and distinct neural regions (Knowlton
et al., 1996; Squire and Zola, 1996).

Second, our results demonstrate a trade-off between these two
forms of learning, reflected both in trial-by-trial behavior and in
activity in the underlying neural systems. Although there has
been increasing interest in the nature of the interaction between
multiple learning systems, findings have been inconsistent, lead-
ing to debates about whether the interaction between different
systems is best characterized as cooperation or competition
(Packard and McGaugh, 1996; Poldrack and Packard, 2003; Bur-
gess, 2006; Pennartz et al., 2011). Lesions of either system have
been shown to enhance the type of performance supported by the
remaining system (e.g., Lee et al., 2008). Additionally, animal
studies have also shown that, over the course of extensive learn-
ing, behavioral control shifts from the hippocampus to the stria-
tum (Packard and McGaugh, 1996). Our results are consistent
with both the cooperation and competition frameworks. In sup-
port of competition, we show evidence for a negative interaction
between forms of memory classically related to the striatum and
the hippocampus. Further, our results build upon previous
across-task studies suggesting a competitive relationship by pro-
viding novel trial-by-trial measures of this interaction, providing
novel evidence for such a relationship at both the behavioral and
neural levels in a single study.

At the same time, a simple competition framework does
not provide a full account for the interactions between these
systems even within our experiment: we also show that successful

Figure 5. Hippocampal–striatal connectivity associated with memory. A, Activity in the hippocampus is significantly more
correlated with activity in the striatum during trials with remembered versus forgotten objects ( p � 0.05 SVC). B, A conjunction
of the memory PPI (A) and the interaction of memory and RPE (Fig. 4A) illustrates overlapping effects in the ventral striatum
(images thresholded at p � 0.005 uncorrected for display; conjunction threshold: p � 0.005).
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memory formation is related to greater functional connectivity
between the hippocampus and the striatum during choice, con-
sistent with other reports of cooperation between these systems
(Sadeh et al., 2011). Although we find no direct relationship be-
tween the two effects, on successful encoding trials with greater
hippocampal–striatal connectivity, we also find reduced feed-
back responses in the striatum. As a caveat, it is difficult to sepa-
rate BOLD responses in a rapid event-related design; however,
our results depend not on separating choice and feedback re-
sponses but on decomposing the feedback response by memory.
Overall, our results add to a growing body of research demon-
strating that the nature of the interaction between different forms
of learning is not unitary or simple and is likely to depend on the
demands of the environment.

Indeed, although it is tempting to interpret our results in
terms of a competition between episodic memory and reward
learning, where better performance in one comes at the cost of
worse performance in the other, another possibility is that reward
learning in the presence of successful episodic memory is differ-
ent, but not actually worse. In particular, the episodic memory
system is well situated to guide choices (Lengyel and Dayan, 2005;
Biele et al., 2009), although memory-guided choices likely reflect
different quantitative principles than standard, incremental rein-
forcement learning models. According to this view, choices en-
gaging the episodic memory system might be accompanied by
effects similar to what we observe in our data, including better
episodic encoding, enhanced hippocampal–striatal interactions,
and choices and neural prediction errors that are more poorly fit
by standard reinforcement learning models. Speculatively, the
particular pattern of the behavioral effect, whereby learning from
reward trades off with episodic memory, might be due to credit
assignment of the received reward to the trial-unique object
rather than the option color. A direct test of this idea would be
possible in a task where objects occur more than once.

Although our results focus on the effect of successful memory
encoding, a number of lines of evidence suggest that decisions
may be guided by retrieval of non-procedural memories as well as
(or instead of) incremental trial-and-error reward learning (Tol-
man, 1948; Dickinson, 1985; Daw et al., 2005; Lengyel and Dayan,
2005; Daw and Shohamy, 2008; Biele et al., 2009). For example, it
has been suggested that hippocampal memories support
choices by simulating candidate future courses of action
(Johnson and Redish, 2007; Buckner, 2010; Pfeiffer and Fos-
ter, 2013) or new decisions (Wimmer and Shohamy, 2012;
Barron et al., 2013), and that decisions may be guided by
episodic memory (Lengyel and Dayan, 2005; Biele et al., 2009)
or working memory (Collins and Frank, 2012) for previous
choices.

Given this menagerie of models, at present there is much less
clarity about the trial-by-trial, quantitative progression of these
sorts of learning, compared with the classic and quantitatively
specific incremental reward learning theories that drove our
analysis. Our results may thus reflect the possibility that such
novel influences contribute more to choices when episodic mem-
ory is strong. Indeed, a slower learning rate and, equivalently, a
weaker modulation of choice by an immediately preceding re-
ward is consistent with a longer timescale for hippocampal learn-
ing (Bornstein and Daw, 2012). Neurally, many such forms of
learning are less likely to rely on RPEs, at least in their standard
form (Gläscher et al., 2010; Daw et al., 2011). Future studies that
affirmatively characterize the contributions of alternative
models to incremental reward learning will be needed to test
this possibility.

A different candidate explanation for many of our effects
might be due to attentional fluctuations between the objects and
the reward learning task. One version of this idea is that some of
our effects are due to competition for sensory processing of dif-
ferent task cues, as by visual attention. Importantly, though, our
effects were specific, allowing us to reject the possibility that our
results relate trivially to fluctuations in task engagement, instead
isolating specific aspects of the learning behavior that are subject
to competition. For instance, if enhanced object memory was due
simply to sensory attention to the object cues at the expense of the
reward learning task, we would have expected to see reaction
times (a classic correlate of on-task attention) (Luce, 1986) driv-
ing the effect, but they do not. Moreover, we did not find evidence
that successful memory encoding competed with the use of val-
ues to guide the choice on the same trial, as expected under direct
attentional competition between the object and task: the negative
influence of memory encoding was selectively related to a weaker
effect of reward on subsequent choice. This suggests competition
at the level of learning values from reward, rather than choice.
Indeed, the competition between object memory and learning
from reward cannot be due to direct competition for sensory
processing between object and reward cues because they are not
displayed simultaneously. Further evidence that the effects of
memory extend beyond simple attentional processing of sensory
cues is that the effect of memory on striatal RPEs comprises not
just the reward itself but also the component of prediction error
related to choice value, a subjective, internal variable. It is also
possible that attention is allocated sequentially on a trial, first to
the value-guided choice, and then to the objects, in such a way
that successful encoding interferes with the maintenance of
working memory for which option is chosen. In other incidental
encoding tasks, however, neural correlates of encoding success
appear before 400 ms (Sanquist et al., 1980; Paller et al., 1987),
faster than choices in our task (mean 867 ms). Further, we find no
relationship between reaction time and the effect of reward on
choice, as might have been expected if the effect were driven by
competition between the representations during the time re-
maining after the choice.

In any case, our results together suggest that competition
must act at the level of internal representations, namely, the
memory for the chosen option or in the subsequent differential
assignment of feedback to objects versus cues. These results may
reflect the brain’s mechanisms for key computational features of
reinforcement learning: the maintenance of “traces” of chosen
options as well as the “credit assignment” of outcomes to preced-
ing choices. Although such mechanisms are not yet well under-
stood in neuroscience or psychology, they are likely related to cue
competition phenomena in learning (e.g., Mackintosh, 1975;
Pearce and Hall, 1980; Robbins, 1998; Kruschke, 2001). Such
competition also includes as a special case another topic of ongo-
ing interest, the control of the rate of learning even to a single cue
(Dayan et al., 2000; Behrens et al., 2007; Li et al., 2011).

Finally, from the perspective of what influences episodic
memory, our results demonstrate that reward might impair
memory formation. Superficially, this result seems to contrast
with recent studies reporting that reward can enhance episodic
memory (Wittmann et al., 2005; Adcock et al., 2006; Bialleck et
al., 2011; Mather and Schoeke, 2011). A critical difference may be
that prior experiments used static reward contingencies and did
not include choice and learning. A further difference is that, in
prior studies, reward value was already known to participants
when objects were presented (Wittmann et al., 2005; Adcock et
al., 2006). Further studies will be necessary to more fully under-
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stand the positive and negative effects of reward learning on
memory.

In conclusion, research in episodic memory and reward learn-
ing has progressed tremendously in the past few decades, yet
these areas remain predominantly independent. Our results sug-
gest that an important goal for future research is to further un-
derstand the interrelationships between the cognitive and neural
systems supporting memory and reward learning. Greater
knowledge of these interactions is important because these two
types of learning often co-occur. For example, outside of simple
experimental settings, rewards and punishments are usually as-
sociated with episodes in life that contain unique items and con-
texts. Our results demonstrate that such experiences can be
influenced by multiple interactive forms of learning, providing
new insight into how learning can guide decisions and actions.
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