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Abstract

■ Neuroscientific studies of social cognition typically employ
paradigms in which perceivers draw single-shot inferences
about the internal states of strangers. Real-world social infer-
ence features much different parameters: People often encoun-
ter and learn about particular social targets (e.g., friends) over
time and receive feedback about whether their inferences are
correct or incorrect. Here, we examined this process and, more
broadly, the intersection between social cognition and re-
inforcement learning. Perceivers were scanned using fMRI while
repeatedly encountering three social targets who produced
conflicting visual and verbal emotional cues. Perceivers guessed
how targets felt and received feedback about whether they had

guessed correctly. Visual cues reliably predicted one target’s
emotion, verbal cues predicted a second target’s emotion, and
neither reliably predicted the third target’s emotion. Perceivers
successfully used this information to update their judgments over
time. Furthermore, trial-by-trial learning signals—estimated using
two reinforcement learning models—tracked activity in ventral
striatum and ventromedial pFC, structures associated with re-
inforcement learning, and regions associated with updating social
impressions, including TPJ. These data suggest that learning
about others’ emotions, like other forms of feedback learning,
relies on domain-general reinforcement mechanisms as well as
domain-specific social information processing. ■

INTRODUCTION

“Perceivers” (individuals focusing on another person)
often draw inferences about the experiences of social
“targets” (individuals who are the focus of perceivers’ atten-
tion) based on complex and sometimes conflicting social
cues (Zaki, 2013; Freeman & Ambady, 2011; Gilbert,
1998). Neuroscientific studies of social cognition typically
employ paradigms in which perceivers draw single-shot
inferences about strangers and do not learn whether these
inferences are correct (Frith & Frith, 2012; Zaki & Ochsner,
2011). Although this approach provides experimental
control, it fails to capture two key features of social cogni-
tion (Zaki &Ochsner, 2009; Neisser, 1980). First, perceivers
outside laboratory contexts often draw inferences about
familiar targets such as friends (Stinson & Ickes, 1992).
Second, perceivers often receive feedback about when
their inferences are correct, for instance, when targets
correct perceivers after those perceivers make incorrect
guesses about targets’ experiences (Swann, 1984).

Feedback allows perceivers to learn “rules” for under-
standing social targets and, crucially, to learn which types
of information they should use when drawing inferences
about particular others. Consider a perceiver who meets

two targets. One (Bob) expresses his emotions through
facial expressions: When he grins, he is typically happy.
Another target (Joe) produces misleading facial expres-
sions, such as smiles that hide anxiety or politely hidden
boredom. However, Joe expresses emotions verbally.
Initially, a perceiver might make guesses about each tar-
get based on visual and verbal information. Upon receiv-
ing feedback, a perceiver might “tune” her inferences
toward cues that are useful for understanding each target
(visual information for Bob and verbal information for
Joe) and away from the use of misleading information.
This same perceiver might further develop, through expe-
rience and feedback, increasingly strong assumptions
about the cues that accurately signal a given target’s affect.
Finally, as a perceiver learns to reliably understand a tar-
get’s experience, they might imbue a familiar target—and
their own ability to predict the target’s internal states—
with value.
At least two mechanisms could support such learning,

depending on the extent to which social cognition is sup-
ported by processes distinct from those engaged by non-
social phenomena (Ostrom, 1984). First, social learning
could rely on domain-general reinforcement learning
mechanisms, through which individuals update the ex-
pected value with which they imbue options (i.e., the
extent they believe that option will result in reward)
based on previous experiences that were better or worse
than expected (prediction errors; Sutton & Barto, 1998).
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Expected value and prediction errors track engagement
of dopaminergic targets, especially the ventral striatum
(VS) and ventromedial pFC (vMPFC; see Hare, O’Doherty,
Camerer, Schultz, & Rangel, 2008). Learning how to “read”
social targets over time might thus depend on individ-
uals’ ability to update their sense of how informationally
valuable, or likely to result in correct inferences, a par-
ticular class of social cue is. This learning would occur
based on feedback they have received after using this
type of cue in the past. This would be quite similar to learn-
ing how reliably other stimuli, such as decks of cards, pro-
duce valuable outcomes. If this is the case, social learning
should behaviorally follow patterns associated with rein-
forcement learning in nonsocial settings and recruit activity
in VS and vMPFC.
Second, learning about social targets could recruit

domain-specific mechanisms associated with social cog-
nition. Neuroscientists have documented consistent
engagement of a circumscribed set of brain regions—
including medial pFC, TPJ, and posterior cingulate cortex
(PCC)—when perceivers consider the minds of social tar-
gets (Frith & Frith, 2012). This system differentiates pro-
cessing of social, as opposed to nonsocial, information in
several domains including long-term memory (Macrae,
Moran, Heatherton, Banfield, & Kelley, 2004), working
memory (Meyer, Spunt, Berkman, Taylor, & Lieberman,
2012), and categorization (Contreras, Banaji, & Mitchell,
2012). Parts of this system—especially PCC and TPJ—also
support the updating of social impressions, for instance,
perceivers’ sense for themorals or qualities of social targets
based on information about those targets’ behaviors
(Bhanji & Beer, 2013; Mende-Siedlecki, Baron, & Todorov,
2013; Mende-Siedlecki, Cai, & Todorov, 2012; Schiller,
Freeman, Mitchell, Uleman, & Phelps, 2009). To the extent
that learning about others’ emotions through reinforce-
ment is likewise domain specific, it should recruit these
regions, especially when feedback indicates that a per-
ceiver needs to update their use of a given cue when infer-
ring how a target feels.
Finally, social learning could represent a hybrid phenom-

enon, encompassing both domain-general and domain-
specific mechanisms (Zaki, Hennigan, Weber, & Ochsner,
2010). Here, we tested these possibilities andmore broadly
explored the intersection between reinforcement learning
and social cognition.

METHODS

Overview

We scanned participants with fMRI while they repeatedly
encountered one of three social targets. On each trial,
the target produced two social cues—one visual and
one verbal—that suggested opposite (positive and nega-
tive) emotional valence. Participants used this information
to infer targets’ emotion and received feedback indicat-
ing whether they were correct. Over the course of the

study, feedback indicated that targets differed with re-
spect to the cues that accurately tracked their emotions.
Specifically, one target (the “visual-correct” target) pro-
duced ∼88% correct feedback when perceivers inferred
her or his emotions using visual cues. A second target
(the “caption-correct” target) produced ∼88% correct
feedback when perceivers used verbal cues, and a third,
“unpredictable” target produced 50% correct feedback
regardless of the cues on which targets relied (see Fig-
ure 1 for task schematic). The particular social targets
paired with visual-correct, caption-correct, and unpredict-
able feedback varied across participants.

We fit learning about each target using two models. In
a standard Q-learning model (Daw, 2009; Sutton & Barto,
1998), we assumed that individuals learned about the
correctness or incorrectness of only the cue (visual or
caption) that they used on a given trial and did not learn
about the informational value of nonchosen cues. As
each trial included two cues, we were also interested in
whether participants updated the expected value from
both chosen and nonchosen cues (see below for more
discussion of this possibility). To examine this, we em-
ployed an augmented Q-learning model that allowed for
individuals to also learn about the nonchosen cue based
on feedback.

We used the fit parameters from each model to (i) test
whether people indeed learn about both chosen and
nonchosen cues during social learning and (ii) generate

Figure 1. Task schematic. Participants encountered silent videos and
captions from three social targets, each of whom produced conflicting
social cues (here, two positive videos accompanied by two negative
captions). Participants then drew inferences about whether the target in
fact felt positively or negatively and received feedback about whether
their inferences were correct. For one target (caption correct or video
correct), inferences based on verbal cues produced correct feedback
87.5% of the time. For another target (video correct or caption correct),
inferences based on visual cues produced correct feedback 87.5% of the
time (pictures here, a caption-based inference receives incorrect
feedback). For a third target (not pictured), neither visual nor verbal
social cues reliably produced correct feedback.

Zaki et al. 1271



trial-by-trial regressors through which to examine brain
activity associated with expected value and reward pre-
diction errors during social learning. As described below,
we fit different sets of parameters to the different cue
conditions (visual correct, caption correct, and control)
to examine learning in each condition.

Participants

Participants (n = 25, 13 women, age = 23.1 ± 6.7 years)
completed informed consent in accordance with the guide-
lines of the Columbia University institutional review board
and were remunerated for their participation. Data from
two participants were lost because of computer error,
data from one participant were lost because of excessive
movement, and four additional participants either failed
to respond on >25% of trials or used only one informa-
tional channel (e.g., visual cues) in judging targets’ affective
states on >90% of trials, rendering their data unusable in
subsequent analyses. Thus, our final sample consisted of
18 participants (11 women, age = 23.7 ± 7.9 years).

Stimuli and Procedure

Participants were scanned with fMRI while they viewed
and drew inferences about three social targets. On each
trial, they viewed two simultaneously presented cues: a
silent, 5-sec video of a target talking and a short (<15-
word) caption describing an emotional event. Participants
were told that the captions summarized the event about
which the target in the video spoke. Videos and captions
were drawn from a stimulus library described elsewhere
(Zaki et al., 2010). Videos and captions were normed to
ensure that, viewed individually, they were judged as
either positive or negative emotion on a 9-point Likert
scale (1 = very negative, 9 = very positive; ratings for
positive and negative videos: 6.03 ± 0.97 and 4.05 ±
0.78, respectively; ratings for positive and negative cap-
tions: 7.42 ± 0.44 and 2.69 ± 0.51, respectively). Positive
and negative captions did not differ with respect to word
count (9.81 ± 2.38 and 9.31 ± 2.91, respectively; t < 1.0,
p > .25). It is worth noting that, overall, videos were
viewed as less affectively valenced than captions. This is
consistent with the idea that naturalistic emotion expres-
sions like the ones used here are rarely as clear or exag-
gerated as posed expressions (Russell, Bachorowski, &
Fernandez-Dols, 2003). Nonetheless, our norming data
indicate that these visual cues were reliably identifiable as
positive and negative (i.e., observers rarely rated a positive
video below the midpoint of the scale, and vice versa).

Each trial beganwith a jittered fixation of 500–8500msec,
optimized for rapid presentation using Optseq (Dale,
1999). After this, participants encountered a combination
of visual and verbal cues, each of which suggested opposite
interpretations of targets’ likely affective valence. On a
given trial, a participant might encounter a video in which
a target appeared to feel negatively, paired with a positive

caption, or vice versa. After a jittered ISI of 500–4500 msec,
participants were given 2000 msec to decide whether
they believed the target felt positive or negative. After
drawing each inference, participants received feedback
for 2000 msec, indicating whether their choice had been
correct or incorrect (Figure 1). Participants viewed and
made judgments about each target 48 times—24 includ-
ing a positive video and a negative caption and 24 includ-
ing a negative video and a positive caption—for a total of
144 trials.
Critically, feedback varied across the three targets.

Specifically, when viewing one target (the visual-correct
target), the “correct” answer corresponded to visual infor-
mation on 87.5% of trials (42/48). Note that this source of
information typically produced “correct” feedback ir-
respective of the affective valence of each cue. That is,
when the visual-correct target was paired with a positive
video and a negative caption, participants who answered
“positive” received feedback that they were correct on
87.5% of trials. When the visual-correct target instead
was paired with a negative video and a positive caption,
participants who answered “negative” were correct on
87.5% of trials. When viewing a second target (the caption-
correct target), captions likewise provided the “correct”
answer on 87.5% of trials. When viewing a third target (the
unpredictable or U target), neither videos nor captions
reliably predicted the “correct” valence. The cue type that
produced “correct” feedback for each target was constant
across the session, such that an optimal strategy for cor-
rectly understanding a given target (e.g., caption correct)
would be to rely on their associated cue type (e.g., verbal
information) on all trials.
Each video was shown to each perceiver only once. All

perceivers saw 48 unique videos of each social target,
paired with a pseudorandomized set of captions that
were opposite in valence from videos (i.e., 24 positive
videos from each target paired with 24 negative captions,
and vice versa). As mentioned above, we also random-
ized, across perceivers, whether each target was paired
with video-correct, caption-correct, or unpredictable feed-
back. Therefore, although all participants saw the same
videos of each target, (i) these videos did not repeat within
participant, and (ii) the pairing of videos with captions
and the feedback paired with videos for a given target
varied across participants. Trials were fully randomized
across targets, such that a given trial was equally likely to
include any of the three targets.

Behavioral Analysis

To visualize participants’ learning over time, we split the
48 trials on which participants viewed each target into
six “bins” of eight trials apiece and assessed the pro-
portion of trials in each bin during which participants re-
lied on the correct cue type to assess each target’s state.
Note that this, in some cases, constituted assigning a re-
sponse as correct even if it resulted in incorrect feedback,
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provided that the participants’ guess reflected the type of
information they should have used for each target. For
instance, on 12.5% of trials including the visual-correct
target, perceivers would receive “incorrect” feedback
for making judgments based on visual information
although this was the correct general strategy; these
trials would be counted as correct in our analysis. We
used repeated-measures one-way ANOVAs within condi-
tion (visual correct, caption correct, and unpredictable)
to assess increases in the proportion of correct judg-
ments across blocks and repeated-measures two-way
ANOVAs (of Block × Condition) for each pair of condi-
tions to assess differences in improvement as a function
of the type of correct information provided by targets.

Modeling

To formally assess learning, we employed modeling ap-
proaches from reinforcement learning that describe the
value participants ascribe to different cues, the choices
they make, and how they learn based on feedback. At
any given point, a perceiver holds a belief about the
expected value of each social cue. Here, this value is
informational, reflecting the value of this cue in allowing
the perceiver to correctly guess how the target feels. For
instance, an expected value of 0.8 for a visual cue indi-
cates that a perceiver believes that relying on that cue—
and inferring a target’s emotional state based on visual
information—will give the perceiver 80% of the maximum
reward value associated with being correct about that
target’s state.
As perceivers make choices about a target’s emotion

and receive feedback about whether they are correct,
the model updates the values assigned to these param-
eters, based on the difference between the expected
values and the feedback experienced as a consequence
of each choice (a prediction error). For instance, if a per-
ceiver relies on visual information to infer a target’s state
but learns that this inference is incorrect, the perceiver
will reduce the informational value they expect such cues
to have in subsequent judgments. We used Q-learning
models to examine how participants updated the value
of chosen information (see Sutton & Barto, 1998).
First, we applied a variant of a Q-learning model that is

often used to study instrumental learning based on feed-
back (Daw, 2009; Sutton & Barto, 1998). This “standard”
model focuses on, and updates, only the informational
value of the chosen cue—for instance, visual cues on trials
when perceivers based their inference on visual infor-
mation. Option values were initialized at 0.5. When an
individual chooses to follow a particular information
source i (visual or caption information) on trial t and
receives a reward (0 or 1), the expected value of that
cue in correctly predicting the target’s emotion is updated
according to

Vi;t ¼ Vi;t−1 þ α⋅δt (1)

where α is a free parameter controlling the learning rate—
or how quickly the perceiver updates their valuation
based on feedback—and δt is the prediction error asso-
ciated with choosing visual information on that trial.
Prediction error, in turn, is specified by

δt ¼ rt−Vi;t−1 (2)

the difference between the actual reward associated on
that trial (rt) and the expected value of the chosen cue
on the prior trial, Vi,t−1.

Given value estimates on a particular trial, individuals are
assumed to choose between the options stochastically with
probabilities Pvis and Pcap according to a softmax distribu-
tion (Daw, O’Doherty, Dayan, Seymour, & Dolan, 2006):

Pi;t≈ exp β Vi;t
� �� �

=
Xk

i¼1
exp β Vi;t

� �� �
(3)

The free parameter β represents the softmax inverse
temperature, which refers to an individual’s tendency
to reliably select the option with the higher expected
value on any given trial.

To provide an example of how social learning might
operate under this model, consider the case where, at
the start of the task, a perceiver believes a verbal cue
to have an initial value of 0.5. The perceiver nonetheless
uses this cue to infer the target’s emotion and learns that
this inference is correct. To calculate updated next-trial
values, the prediction error will be computed as in Equa-
tion 2: 1 (feedback) − 0.5 (expectation) = 0.5. Then,
with an example learning rate of 0.25, as per Equation 1,
(0.5 * 0.25) would be added to the initial value of verbal
cues, yielding an estimated value of 0.625. On the next
trial in which the perceiver encounters this same target,
the perceiver’s choice probability of the verbal and visual
cues, respectively, would be updated according to this
new value. For instance, under an example β (softmax)
of 4, these choice probabilities would be 62.25% and
37.75%. For further elaboration on reinforcement learning
models, see Daw (2009).

All four parameters were fit to participants’ behavior
and task feedback using MATLAB’s (The MathWorks,
Natick, MA) fmincon, which included 20 starting points
to avoid local minima. The resulting model provides a
single estimate of each participant’s learning rate (α) and
inverse temperature (β) and trial-by-trial estimates of the
value associated with visual and caption cues (Vt(vis) and
Vt(cap)) and prediction error (δt) at each time point during
the task. In calculating trial-by-trial estimates, we followed
common practice in the field by using groupmean learning
rates, as individual learning rates are typically too unstable
to produce robust regressors for neuroimaging (following
previous work: Wimmer, Daw, & Shohamy, 2012; Daw,
2009; Schönberg, Daw, Joel, & O’Doherty, 2007; Daw
et al., 2006).

Consistent with prior work, we modeled brain activity
that tracked both positively and negatively with predic-
tion error (Abler, Walter, Erk, Kammerer, & Spitzer,
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2006; McClure, Berns, & Montague, 2003). Prediction error
signals were “signed,” meaning that negative prediction
errors occurred when a perceiver was less accurate than
they would have expected on a given trial based on our
model (i.e., the inverse of a reward response). As such,
neural correlates of negative prediction errors in this task
were meant to isolate a learning signal associated with a
need to correct one’s inferences after errors.

A standard Q-learning model assumes that participants
learn about and update only the value of the chosen cue.
For instance, if a perceiver draws an inference about a
target based on visual information and learns that he or
she was right, his or her expected value for subsequent
visual cues will increase, but the value he or she places
on caption cues (which he or she did not choose) will
remain unchanged. However, it is possible that indi-
viduals in our task simultaneously learned about both
chosen and nonchosen cues. For instance, if a perceiver
relies on a visual cue to infer how a target feels and re-
ceives feedback that they are incorrect, he or she might
simultaneously decrease the expected informational
value of visual cues and increase the expected informa-
tional value of later verbal cues. This is especially possible
given the fact that, in our task, visual and caption cues
always provided conflicting information about targets’
valence, such that, whenever a chosen cue was wrong,
a nonchosen cue was also correct.

To examine the possibility that perceivers simulta-
neously update the value associated with chosen and non-
chosen cues, we also examined an “augmented”Q-learning
model that allows for learning about the nonchosen option
in addition to the chosen option.1 By adding a secondary
learning rate (α2), the model tests whether agents simulta-
neously learn about multiple cues—here, both the chosen
and nonchosen cues.

In the augmented Q-learning model, the value for the
attended (“chosen”) cue is updated according to Equa-
tion 1. The value for the nonattended (“nonchosen”)
informational cue is updated according to

δnon;t ¼ rt−Vnon;t−1 (4)

Vnon;t ¼ Vnon;t−1 þ α2⋅δt (5)

The value of the nonchosen option was updated with
an additional learning parameter, α2. A negative α2
produces a prediction error in the opposite direction as
the chosen option, for example, increasing the value of
the chosen information source and decreasing the value
of the nonchosen information source. This kind of up-
dating may be expected if participants assume that there
is only one correct information source. As α2 decreases
to zero, the prediction error applies only to the chosen
(“attended”) cue. Thus, if α2 = 0, perceivers only update
their expected value based on prediction errors over the
chosen cue, and the augmented Q-learning model learn-
ing update rule “reduces” to the Q-learning model de-

scribed above. Finally, as α2 increases above zero,
learning applies positively to both the chosen and non-
chosen options. In cases where the α2 parameter is nega-
tive, to allow for negative updating of the nonchosen
option, the update rule for the nonchosen cue uses the
absolute value of α2 in Equation 6 and replaces the r term
with the absolute value of (r − 1) in Equation 5. Separate
learning models were fit for the different cue types: visual
correct, caption correct, and control. Choices were mod-
eled using the softmax function as described above in
Equation 3, where the free parameter β fits were opti-
mized as described above.
Standard and augmented Q-learning models produced

very similar fits to the behavioral learning data, and par-
ticipants did not show significant learning about the non-
chosen cue (see Results below). This suggests that the
standard Q-learning model likely serves as a more parsi-
monious descriptor of social learning in this paradigm. As
such, we restricted neuroimaging analyses to a model
using variables derived from the base Q-learning model.

fMRI Data Acquisition and Analysis

Imaging data were collected on a 3.0-T Phillips scanner
using a gradient-echo echo-planar pulse sequence (38
contiguous axial slices, repetition time = 2000 msec, echo
time = 20, 3 × 3 × 3 mm voxel size). A high-resolution
T1-weighted structural scan (magnetization prepared
rapid gradient echo) was collected before three functional
runs of 336 repetition times each. Each functional run
began with five volumes before the first stimulus onset;
these volumes were discarded to allow for magnetic field
equilibration. Stimuli were presented onto a screen at the
end of the magnet bore using Presentation Software
(www.neurobs.com). Participants viewed the screen via
a mirror mounted on the head coil, and a pillow and foam
cushions were placed inside the coil to minimize head
movement.
MRI data were preprocessed and analyzed using cus-

tom batch scripts that interfaced with SPM2 (Wellcome
Department of Cognitive Neurology, London, UK). Func-
tional data were time-corrected for differences in acqui-
sition time between slices for each whole-brain volume
and realigned to correct for head movement. Data were
then transformed into a standard anatomical space (3-mm
isotropic voxels) based on the ICBM 152 brain template
(Montreal Neurological Institute). Normalized data were
then spatially smoothed (6-mm FWHM) using a Gaussian
kernel. Statistical analyses were performed using general
linear models in which the events were convolved with a
canonical hemodynamic response function, its temporal
derivative. General linear models included a choice value
regressor modeled for the 5-sec duration of the cue period
and a prediction error regressor modeled at the time of
feedback with 0-sec duration as well as same-duration con-
trol regressors for these trial periods. We further included
additional covariates of no interest—a session mean and a
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linear trend—to ensure that any patterns in brain activity
we saw do not reflect scanner drift over time (either across
or within runs). This analysis was performed individually
for each participant, and contrast images for each partici-
pant were subsequently entered into a second-level analy-
sis treating participants as a random effect.
To assess common activity in response to both visual-

correct and caption-correct targets, we first isolated activ-
ity associated with value signals in response to each target
in separate imaging analyses (by including positive con-
trast weights for the value regressor in response to each
target alone). We then computed a two-way conjunction
analysis combining activation maps reflecting (i) the ex-
pected value regressor in response to the visual-correct
target alone and (ii) the same regressor in response to
the caption-correct target alone. We computed a similar
conjunction of activation maps reflecting prediction error-
related engagement in response to the visual-correct target
and the caption-correct target. These conjunction maps
employed the minimum statistic approach described by
Nichols, Brett, Andersson, Wager, and Poline (2005),
which requires each individual map in the conjunction
(as opposed to either one) to meet a chosen statistical
criterion.
To isolate preferential brain activity associated with

learning about our two predictable targets, we directly
contrasted brain activity associated with the value regres-
sor for the visual-correct, as compared with the caption-
correct, target and with the caption-correct, as compared
with the visual-correct, target. We computed similar direct
contrasts of prediction error-related activity across visual-
correct and caption-correct targets.
Brain regions fitting single contrast models (for prefer-

ential activity related to learning from one cue type) were
identified using a threshold of 32 or more contiguous
voxels at a voxelwise threshold of p < .005. These height
and extent thresholds were selected on the basis of a
Monte Carlo simulation implemented in MATLAB (similar
to Monte Carlo simulation in AFNI and SPM), to cor-
respond with an overall false-positive rate of <5%, cor-
rected for multiple comparisons (Slotnick, Moo, Segal,
& Hart, 2003). To compute appropriate thresholds for
conjunctions between two contrast maps (assessing com-
mon learning-related activity across cue types), we used
Fisher’s (1932) methods, which combine probabilities of
multiple hypothesis tests using the following formula:

χ2 ¼ −2
Xk

i¼1

log e pið Þ (6)

where pi is the p value for the ith test being combined, k
is the number of tests being combined, and the resulting
test has a χ2 distribution with 2k degrees of freedom.
This equation reveals that thresholding each parametric
map of value-related and prediction-error-related activity
at a p value of .02 in a two-way conjunction corresponds
to a combined threshold of p < .003. We then combined

this threshold with an extent threshold of 30 contiguous
voxels—again using Monte Carlo simulations—consistent
with a false discovery rate of <0.05.

RESULTS

Behavioral Results

Participants demonstrated significant learning across the
session in response to the visual-correct target (accuracy
by eight-trial “bins”: F(5, 85) = 3.55, p < .01) and mar-
ginal learning in response to the caption-correct target
(F(5, 85) = 2.12, p = .07; see Figure 2 for accuracy
across trial bins in all conditions). This likely reflects an
initial bias toward using caption cues. Perceivers initially
relied on visual cues in response to the visual-correct tar-
get at chance (mean use of visual cues in Trial bin 1 =
46%, in comparison with 50%: t = −1.16, p > .25) but
relied on captions in response to the caption-correct tar-
get significantly more than chance (mean use of verbal
information in Trial bin 1 = 60%, in comparison with
50%: t = 2.18, p < .05). This initial pattern of inference
left less “room for improvement” in response to the
caption-correct, as compared with visual-correct, target.
An initial bias toward captions in social inference is con-
sistent with prior demonstrations that perceivers pref-
erentially utilize contextual, as compared with facial,
cues when drawing inferences about others’ emotions
(Zaki et al., 2010; Aviezer et al., 2008).

By contrast, participants demonstrated no learning in
response to the unpredictable target across trial bins.2

Direct Time × Condition contrasts revealed that partici-
pants learned more quickly (i.e., adjusted their behavior
more quickly across trials) from the visual-correct target
than the unpredictable target (F(5, 85) = 4.49, p < .001)

Figure 2. Participants successfully learned about visual-correct and
caption-correct targets, improving inferential accuracy across trial bins.
By contrast, accuracy about unpredictable targets did not improve
over time.
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and from the caption-correct target than from the un-
predictable target (F(5, 85) = 3.78, p < .005) but did not
differ in the speed at which they learned about visual-
correct and caption-correct targets (F(5, 85) = 0.49,
p > .75).

Modeling of Reinforcement Learning

Standard Q-learning model. The Q-learning model
produced learning rates in response to visual-correct
and caption-correct targets that did not differ from each
other (mean αvis = 0.22, SD = 0.25; mean αcap = 0.26,
SD = 0.30; t = 0.42, p > .65) and approximated learn-
ing rates documented in prior studies of nonsocial re-
inforcement learning (Gläscher, Daw, Dayan, & O’Doherty,
2010; O’Doherty et al., 2004).

Augmented Q-learning model. The augmented Q-
learning model, which allowed for learning about the non-
chosen as well as chosen cues, produced learning rates
for the visual-correct and caption-correct targets that did
not differ from each other (mean αvis = 0.32, SD = 0.34;
mean αcap = 0.31, SD = 0.40; t = 0.01, p > .99). For the
secondary learning rate, controlling generalization of feed-
back to the nonchosen option, a negative value would
indicate counterfactual learning, whereas a positive value
would update the nonchosen option in the same direc-
tion as the chosen option. We found that the secondary
learning rate was not different than zero and also similar
across target conditions (mean α2vis = 0.05, SD = 0.52,
p > .75; mean α2cap = 0.04, SD = 0.56, p > .69; caption
vs. video: t = 0.04, p > .97). Furthermore, no participants
were better fit by the augmented, as compared with stan-
dard, Q-learning model (likelihood ratio test, p < .05 sig-
nificance level). The nonsignificant secondary learning
rate suggests that, in accordance with a simpler Q-learning
model, perceivers strongly tracked the informational value
of the cue that they chose on a given trial but might not
have attended to, or updated, the value of the nonchosen
cue.

Neuroimaging Results

Learning Signals Common across Cue Type

Conjunction analysis of reward prediction error signals
common to caption-correct and visual-correct targets re-
vealed engagement of the left nucleus accumbens, along
with the precuneus, precentral gyrus, and a number of
clusters in visual cortex (Figure 3A, Table 1). A similar
analysis probing brain activity negatively correlated with
prediction errors revealed engagement of dorsal ACC,
anterior insula, and TPJ (Table 2). Conjunction analysis
of expected value signals across targets revealed activity
only in vMPFC and precuneus (Figure 3B, Table 1).

Cue-specific Learning Signals

Expected value signals in response to the visual-correct,
as compared with caption-correct, target preferentially
engaged regions associated with processing visual move-
ment and faces, including the fusiform gyrus, supra-
marginal gyrus, and inferior parietal lobe (Figure 4A,
Table 3). Direct comparison of prediction error signals in
response to the visual-correct, as compared with caption-
correct, target also revealed engagement of visual cortex

Figure 3. (A) Conjunction analysis of brain activity predicted by
prediction error signals in response to visual-correct and caption-correct
targets. (B) Conjunction analysis of brain activity predicted by
expected value signals in response to visual-correct and caption-correct
targets. Scale represents t values for each contrast inputted into the
conjunction map.

Table 1. Brain Areas Commonly Responding to Learning Signals
in Response to Both Visual-correct and Caption-correct Targets

Region

Coordinates

t
Volume
(Vox)x y z

Expected value

vMPFC 2 42 −6 3.19 157

Precuneus −8 −36 76 3.11 38

Prediction error

Nucleus accumbens −10 12 −12 2.82 34

vMPFC 4 48 12 2.52 29

Precuneus 12 −76 46 2.91 51

Precuneus 12 −40 42 3.72 107

Precentral gyrus −32 −24 56 3.85 447

Precentral gyrus 24 −28 62 2.7 38

Superior parietal lobe −18 −72 44 4.56 87

Fusiform gyrus 28 −78 −10 2.78 56

Lingual gyrus −4 −72 −4 2.92 119

Superior occipital gyrus 24 −90 30 3.85 397

Superior occipital gyrus −24 −84 22 4.12 474

Inferior occipital gyrus −26 −92 −8 4.35 450

Coordinates are in stereotaxic space of the Montreal Neurologic Institute.
t values reflect the statistical difference between conditions, as computed
by SPM.
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(Figure 4B, Table 3). Direct comparisons of value and
prediction error signals associated with the caption-correct,
as compared with visual-correct, target produced no acti-
vation. At a relaxed extent threshold of 20 voxels, we did
identify two clusters that responded more to prediction
errors for caption-correct, as compared with visual-correct,
targets (peak coordinates and statistics: −14, 12, 24; t =
4.53, cluster size = 28 voxels; 20, 10, 32; t= 3.48, extent =
cluster size = 24 voxels) and one cluster that responded
more to value signals over caption-correct, as compared
with visual-correct, targets (peak: 64, 0, 22; t = 3.47,
cluster size = 35 voxels). Interestingly, the cluster asso-
ciated with uniquely verbal value, in the precentral gyrus,
is associated with listening to and producing speech
(Wilson, Saygin, Sereno, & Iacoboni, 2004). However,
we hesitate to interpret these data further given their
exploratory nature.

DISCUSSION

The vast majority of everyday social cognition does not
involve people making single-shot judgments about
strangers. Instead, perceivers engage in a dynamic, inter-
active process in which they learn about individual tar-
gets through trial, error, and feedback (Schilbach et al.,
2012; Neisser, 1980). Here, we provide evidence that
such learning approximates other forms of reinforce-
ment, in that observers use successful and unsuccessful
social inferences to update the perceived value of social
cues, a process accompanied by activity in brain regions
associated with domain-general feedback learning. We
also found that updating the value of social cues pro-
duced activity in regions associated with domain-specific
social information processing.

With respect to domain generality, providing per-
ceivers with feedback about the accuracy of their social
inferences produced activity in VS and vMPFC, in a man-
ner consistent with reinforcement learning. First, as the
expected value of each target—in essence, the proba-
bility that perceivers could correctly assess the target’s
emotions using the proper cue—increased across the
experimental session, encountering that target also pro-
duced stronger signals in vMPFC, but not in VS. Second,
prediction errors signifying feedback that was better than
the current expected value of a target tracked activity in
VS more consistently than in vMPFC. These data dovetail
with a growing consensus about the complementary roles
these regions play in reinforcement learning: with the stri-
atum encoding a “teaching signal” that allows organisms
to update value representations based on feedback and

Figure 4. (A) Contrast analysis isolating activity related to prediction
errors in response to the visual-correct, as compared with caption-correct,
target. (B) Contrast analysis isolating activity related to expected value
in response to the visual-correct, as compared with caption-correct,
target. Scale represents t values.

Table 3. Brain Areas Preferentially Responding Learning Signals
in Response to Visual-correct > Caption-correct Targets

Region

Coordinates

t
Volume
( Vox)x y z

Expected value

Cuneus 16 −90 8 6.91 730

Cerebellum 42 −54 −40 4.84 69

Inferior parietal lobe −30 −58 38 4.3 176

Lingual/fusiform gyrus −18 −86 0 4.29 182

Supramarginal gyrus −38 −34 28 3.63 77

Calcarine gyrus −22 −58 12 3.53 63

Prediction error

Inferior temporal gyrus −34 −4 −36 5.24 121

Cuneus −12 −82 28 4.16 95

Coordinates are in stereotaxic space of the Montreal Neurologic Institute.
t values reflect the statistical difference between conditions, as computed
by SPM.

Table 2. Brain Areas Negatively Correlated with Prediction
Error Signals

Region

Coordinates

t
Volume
( Vox)x y z

Dorsal ACC/dMPFC −2 34 38 4.46 188

ACC/SMA −10 16 56 3.8 50

Inferior frontal gyrus (IFG) −30 50 10 4.98 296

IFG/dorsal anterior insula 34 22 12 4.55 128

IFG/dorsal anterior insula −36 22 14 3.79 31

Anterior insula −38 18 −8 4.2 88

Anterior insula 26 20 −12 3.85 46

Superior frontal gyrus −54 20 30 3.83 36

TPJ/inferior parietal lobe 54 −50 26 3.66 35

Superior temporal gyrus 44 −40 2 4.29 202

Coordinates are in stereotaxic space of the Montreal Neurologic Institute.
t values reflect the statistical difference between conditions, as computed
by SPM.
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the vMPFC encoding an integrative measure of stimulus
value in the service of decision-making (Grabenhorst &
Rolls, 2011; Rangel & Hare, 2010). Importantly, the VS
and vMPFC did not display preferential activity to learning
based on visual, as compared with verbal social, cues, or
vice versa. Finally, prediction error signals negatively
tracked activity in dorsal ACC and insula, regions broadly
associated with negative feedback (Barch, Braver, Sabb, &
Noll, 2000; Carter et al., 2000).

These data connect in interesting ways with the small
but growing literature on disjunctions between social and
nonsocial information processing. Our paradigm closely
mimicked other tasks examining brain responses to infor-
mational value (Tricomi & Fiez, 2012; Behrens, Woolrich,
Walton, & Rushworth, 2007), with the only difference be-
ing that we employed social, as compared with nonsocial,
information. This might make it unsurprising that we
found patterns of activation similar to these past studies.
However, at least a few studies have found that other
tasks—such as working memory or categorization—
produce qualitatively different patterns of brain activity
when performed over social, versus nonsocial, informa-
tion (Contreras et al., 2012; Meyer et al., 2012). As such, it
is useful to document which cognitive operations produce
brain activity that varies, versus remaining unchanged,
across these stimulus types.

With respect to domain specificity, both expected value
and prediction errors tracked engagement of the pre-
cuneus, posterior cingulate, and (negatively) TPJ. These
regions are associated with self-projection (Buckner
& Carroll, 2007), social cognition (Mitchell, 2009a), and
updating social impressions (Schiller et al., 2009). These
data are consistent with an account under which re-
inforcement learning signals in the social domain involve
both a “value component” encoded in VS and vMPFC and a
“social updating” component encoded in PCC, precuneus,
and TPJ.

Finally, neural correlates of learning signals differed in
response to visual-correct and caption-correct targets.
Extrastriate visual cortex—including the fusiform gyrus—
demonstrated even tighter domain specificity, tracking
prediction errors and expected value only when social
feedback favored visual cues. It is interesting that learning
from verbal cues (caption-correct targets), as compared
with visual cues, was accompanied by weaker brain activ-
ity. One possible explanation for this discrepancy sur-
rounds participants’ overall reliance on each cue type.
Consistent with prior work (Aviezer et al., 2008; Carroll
& Russell, 1996), perceivers in our task exhibited an initial
bias toward using verbal information in drawing infer-
ences about targets. In the context of learning, high initial
reliance on verbal cues could restrict the range with which
participants could update the value of such cues. This
effect was likely compounded by the fact that our visual
cues, when viewed alone, appeared less strongly valenced
than the captions alone (see Methods above). Future work
should examine whether manipulations that decrease ini-

tial reliance on verbal information, or increase initial reli-
ance on visual cues, also intensify the behavioral and
neural indices of learning based on verbal information.
Broadly speaking, these data support a conceptual

bridge between feedback learning and social cognition.
Under this model, perceivers initially make guesses about
novel social targets, and targets provide feedback about
whether perceivers have correctly understood them. This
feedback drives activity in dopaminergic targets asso-
ciated with domain-general reinforcement learning sig-
nals as well as regions more specifically associated with
social updating, including TPJ and PCC. These mecha-
nisms, in turn, allow perceivers to update the value of
particular forms of inference (e.g., using facial expressions
to understand targets) and “tune” their inferences about
others (e.g., learning that facial expressions are a strong
guide to one target’s emotions, but not another’s).
The TPJ’s response to negative prediction errors draws

interesting connections with past work. This region is
associated both with inferences about others’ beliefs
and internal states and more generally with redirecting
attention in response to exogenous (e.g., unexpected)
feedback. In particular, recent theoretical work has sug-
gested that TPJ is associated with generating predictions
about the social world and testing those predictions
against evidence about others’ internal states (Koster-
Hale & Saxe, 2013). Consistent with this framework,
one interpretation for TPJ activity in our paradigm is
that participants generated, over time, increasingly con-
fident estimates of the cues that tracked each target’s
internal states. As such, feedback that conflicted with
their expectations—thus generating negative prediction
errors—may have prompted participants to allocate addi-
tional attention to targets’ internal states, with TPJ activity
accompanying this allocation. This interpretation is of
course highly speculative. Future work shouldmore directly
examine whether other situations featuring unexpected
social feedback also elicit TPJ activity consistent with this
idea.
The presence of activity in a given brain structure does

not allow for strong inference about specific underlying
psychological processing (Poldrack & Yarkoni, 2015;
Moran & Zaki, 2013). For instance, the PCC and precu-
neus are involved in nonsocial processes, such as mental
imagery (Cavanna & Trimble, 2006), “stimulus indepen-
dent thought” (Gusnard, Akbudak, Shulman, & Raichle,
2001), and risk perception (McCoy & Platt, 2005). TPJ
similarly responds not only to social inference but also to
reorienting of attention more generally (Corbetta, Patel, &
Shulman, 2008). The TPJ cluster identified here (peak MNI
coordinates: 54,−50, 26) does exhibit a strong association
with social processing. For instance, when evaluated meta-
analytically using Neurosynth (Yarkoni, Poldrack, Nichols,
Van Essen, & Wager, 2011), this peak exhibited strong
associations with the terms “theory of mind” and “belief”
(posterior probabilities for each = .89). However, we
cannot conclusively assert that activity in PCC, precuneus,
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or TPJ during social learning reflects domain-specific social
cognitive mechanisms. Future work should more directly
test this prediction by manipulating social context, for
instance, targets’ group membership (Cikara & Van Bavel,
2014) or observers’ motives to understand targets (Zaki,
2014; Pickett, Gardner, & Knowles, 2004), and examining
the effects of such manipulations on social learning and
accompanying engagement of these regions.
Our data extend a rich and growing literature on the

intersection between social cognition and reinforcement
learning. A number of innovative studies have examined
how individuals learn about the world through social
experiences. For instance, Behrens, Hunt, Woolrich, and
Rushworth (2008) found that individuals update the ex-
pected value of options in a two-armed bandit task as a
function of others’ instructions and also accounted for
the reliability of other social agents when making such
judgments. Similar neural mechanisms also appear to
underlie individuals’ updating of value representation
based on others’ opinions during social influence (Nook
& Zaki, 2015; Klucharev, Hytonen, Rijpkema, Smidts, &
Fernandez, 2009). A group of studies has focused on the
related construct of vicarious learning, through which
individuals update their representation of value based on
others’ experience of reinforcement (Braams et al., 2013;
Burke, Tobler, Baddeley, & Schultz, 2010) or punishment
(Olsson & Phelps, 2007). Here, we complement this ap-
proach by examining the role that reinforcement plays in
changing, updating, and shaping the inferences that indi-
viduals draw not only because of social targets but also
specifically about targets and their internal states. Interest-
ingly, these forms of social learning appear driven by
strongly overlapping neural mechanisms.
Furthermore, the models applied in our data provide

preliminary insight into the structure of learning in social
contexts. In particular, we fit participants’ behavior to two
models that make different predictions about how social
learning operates. The first “standard” learning model
assumed that participants respond to feedback by up-
dating the value of only the cue they used to make their
decision (e.g., trusting visual information less or more
only after having relied on that cue type to draw infer-
ences about targets). The second “augmented” model
allowed for the possibility that perceivers also simul-
taneously update the value they imbue to a nonchosen
option (e.g., learning to trust verbal cues after incorrectly
relying on visual cues to draw an inference). We found
that the learning rate for nonchosen options did not dif-
fer from zero in our data set. This suggests that partici-
pants focused mainly on the value of chosen options in
this particular learning paradigm and paid little attention
to the nonchosen option. It is important to note, how-
ever, that, in our paradigm, chosen and nonchosen options
provided inverse—and therefore redundant—information
about targets’ states. For instance, if a visual cue offered
accurate information about a target, then the accom-
panying textual cue was necessarily inaccurate. Therefore,

the nonchosen option does not offer unique information
about the target. As such, low learning rates over non-
chosen options in our paradigm might reflect an artifact
of our design, rather than a general feature of social
learning.

In particular, there are likely social learning contexts in
which participants learn simultaneously from multiple
cues, and future work should explore such situations.
In our paradigm, targets produced visual and verbal cues
that supported opposing inferences, for instance, a nega-
tive visual display paired with a positive caption. As such,
perceivers who learned that visual cues signaled a target’s
states simultaneously learned that verbal cues negatively
predicted the same target’s state. In many learning con-
texts, cue types such as verbal and visual information
might instead be uninformative (neither stably correct
nor incorrect), be informative to varying degrees (e.g.,
60% vs. 80% correct), or be informative at some times
and not others (Boorman, O’Doherty, Adolphs, & Rangel,
2013; Rushworth & Behrens, 2008; Behrens et al., 2007).
Furthermore, in most real-world social encounters, targets
likely produce congruent information about their internal
states, for instance, smiling while verbally describing
positive events. As such, although our paradigm allowed
us to isolate brain systems involved in one form of social
learning, it might fail to approximate learning in other
social settings.

Future work should vary the informational value of mul-
tiple cues to more systematically assess the brain systems
involved in social learning and test how these systems
vary as a function of social contexts, for instance, when
integrating across congruent versus incongruent social
cues. Using cues with varying informational value could
also allow future studies to decouple the value of chosen
and unchosen cues. This would allow for more accurate
modeling of such updating, expanding on our use of an
augmented Q-learning model.

Another important direction for future work will be
exploring how differences across observers affect learn-
ing during social inference. The current study used a rela-
tively small sample size of 18 participants. This afforded us
enough power to detect learning effects in our repeated-
measures within-participant design but nonetheless con-
stitutes an important limitation. In particular, our study
was quite underpowered to detect between-participant
effects (18 participants, for instance, would only allow
us to reliably detect correlations with r values over .60).
Future work should examine brain correlates associated
with learning about others’ affective states in larger sam-
ples. This would allow for exploration of at least two inter-
esting individual differences in social learning. First,
observers might differ in the type of social cues they ini-
tially employ when drawing social inferences. For instance,
individuals with alexithymia, who have difficulties labeling
emotional states (Mayer, DiPaolo, & Salovey, 1990), espe-
cially based on facial expressions (Nook, Lindquist, & Zaki,
2015), might rely more strongly on verbal cues. Second,
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individuals might vary in their ability to efficiently update
social inferences based on feedback. Individuals with
ventromedial prefrontal damage, for instance, might
exhibit difficulties in adjusting inferences after negative
feedback.

In addition to bridging research traditions across social
cognition and feedback learning, our data make key
points for work in each domain.

Social Informational Value

Although the vast majority of research on reinforcement
learning employs tangible rewards such as food (Daw &
Doya, 2006) or money (Delgado, Miller, Inati, & Phelps,
2005) as feedback, we found that social feedback—even
when divorced from any tangible reward—drove learning
and activity in vMPFC and VS. This is consistent with the
idea that abstract stimuli, and not only material gains,
drive learning and activity in dopaminergic targets. Two
such abstract phenomena are knowing that one has
made a correct response (Foerde & Shohamy, 2011;
Tricomi, Delgado, McCandliss, McClelland, & Fiez,
2006) and receiving information needed to complete a
task (Bromberg-Martin & Hikosaka, 2009). To wit, people
value being right and knowing about the world around
them, and feedback learning processes track not only
reward narrowly construed but any feedback that helps
to structure behavior (Bromberg-Martin, Matsumoto, &
Hikosaka, 2010). Under this framework, it follows that
social information should be especially rewarding. Other
people stand out in the environment both in their moti-
vational relevance (Zaki, 2014; Chevallier, Kohls, Troiani,
Brodkin, & Schultz, 2012; Baumeister & Leary, 1995) and
their unpredictability (Mitchell, 2009b). As such, informa-
tion that allows perceivers to reliably track others’ inter-
nal states should be experienced as highly valuable.

The Breadth of “Social Reward”

These data also add to a growing trend documenting the
breadth of social phenomena that are experienced as re-
inforcing. Thus far, such “social rewards” include learning
that one has been judged positively (Izuma, Saito, &
Sadato, 2008), sharing opinions with others (Nook &
Zaki, 2015; Klucharev et al., 2009), watching others re-
ceive rewards (Zaki, Lopez, & Mitchell, 2014; Mobbs
et al., 2009), and acting generously toward others (Dawes
et al., 2012; Zaki & Mitchell, 2011; Harbaugh, Mayr, &
Burghart, 2007). Here, we document that another social
phenomenon—correctly understanding others—similarly
drives learning and reinforcement-related brain activity.
This separates our paradigm from prior work by empha-
sizing the extent to which people imbue even abstract
social information with value.

The current study further emphasizes the breadth of
social reward by decoupling such reward from positive

social cues. Typically, social rewards are operationalized
using positive cues such as smiling faces (Lin, Adolphs, &
Rangel, 2012; Spreckelmeyer et al., 2009). Here, we docu-
ment value signals in vMPFC and VS even in response to
negative social cues—and feedback about targets’ nega-
tive emotions—provided that perceivers accurately per-
ceived those emotions. This highlights the idea that
negative information can nonetheless provide value if it
helps perceivers predict and adaptively interact with their
social environment.

Conclusion

Neuroscientific examinations of social cognition typically
focus on perceivers drawing inferences about strangers in
the absence of any feedback. In real-world social encoun-
ters, perceivers instead become familiar with specific
social targets and learn rules about how to correctly
understand these targets through repeated feedback.
Here, we model these key social cognitive processes
and find that learning how to optimally infer targets’ emo-
tions behaviorally and neuroscientifically approximates
feedback learning more broadly. These data provide a link
between social cognition on the one hand and computa-
tional and physiological models of reinforcement learning
on the other. Just as importantly, they provide a novel and
mechanistic window into the phenomenon of familiarity
and social learning: central features of real-world social
cognition.
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Notes

1. Note that this kind of learning can also be accomplished in
a multicue variant of the Rescorla–Wagner model (Rescorla &
Wagner, 1972). However, a Q-learning model more simply
models instrumental choice behavior than a Rescorla–Wagner
model.
2. The only trend identified for U targets was for a numerical,
but nonsignificant, tendency toward decreased accuracy over
time (accuracy by bin: F = 1.95, p < .09), because of perfor-
mance lower than chance in the final block. Given that there
was no pattern to the cues deemed “correct” in response to the
U target, we assume this is an artifact.
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