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The brain appears to employ two general strategies for decision-making,  
one relying on previous reinforcement and the other based on more 
flexible prospective reasoning about the consequences of actions. 
Under the first strategy, actions are valued by the rewards they have 
previously produced, as postulated in Thorndike’s law of effect1 and 
formalized in model-free reinforcement learning2. In contrast, under 
the second strategy, choices reflect knowledge of task contingencies or 
structure and also of the outcomes that might be realized, as demon-
strated when navigating new paths in a spatial maze3 or generalizing 
from known relationships to those that were never directly learned4–6. 
Such learning, formalized by model-based reinforcement learning 
theories, allows flexible evaluation of new or changing options7,8.

Although there is much evidence that both choices and choice-related 
neural activity in reinforcement learning tasks can reflect knowledge 
of task contingencies beyond mere reward history7–13, the nature of 
the computational process that actually gives rise to such model-based 
decisions and decision variables remains unclear. It is widely assumed 
that such behavior is produced by evaluation conducted prospectively at 
choice time through a sort of mental simulation, computing the value of 
potential actions over expected future trajectories. A possible substrate 
for such prospective computation is suggested by observations that 
hippocampal place cells report potential future paths during spatial 
navigation14,15; other prospective representations have been shown 
in humans using functional magnetic resonance imaging (fMRI)16. 
However, the evidence that choices and neural decision variables can 
reflect knowledge of task contingencies is separate from the reports of 
prospective neural representations, and it remains unknown whether 
the one underlies or even coincides with the other. Indeed, it is also 
possible that model-based choices result from some other mechanism 
altogether, since some choice algorithms can produce similar flexible 
behaviors through alternative means such as precomputing possible 

decisions when outcomes are received17–19. Consistent with these alter-
native mechanisms, some evidence suggests that flexible, apparently 
model-based choices in humans are driven at least in part by generali-
zation that occurs during initial learning4,5,20 or during rest periods21. 
Here we sought to directly test the hypothesis that model-based choices 
arise from forward-looking computations at the time of choice.

RESULTS
Behavior reflects both model-based and model-free learning
Twenty human subjects underwent fMRI while performing a two-
stage sequential decision-making task22 designed to distinguish 
model-based from model-free reinforcement learning strategies. 
Stages in the task were represented using visual stimuli from categories  
with specific neural correlates (faces, tools, body parts, scenes), allow-
ing us to probe their prospective representations in category-specific 
regions of cortex at choice time (Fig. 1). Each trial began in one of 
two start states (faces or tools), determined pseudorandomly, where 
participants chose between two options. This initial choice determin-
istically controlled which of two more two-option choices (scene or 
body part states) they would encounter next. (This aspect of the task 
differs from those in previous studies of similar sequential decision 
tasks11,12,23, which relied on the consequences of first-stage choices 
being stochastic.) Each second-stage option was rewarded with money 
or not rewarded, with a slowly and randomly drifting probability, such 
that subjects continuously learned by trial and error which sequence 
of choices was most likely to be rewarded.

The first-stage options were implicitly parallel between the two 
states: selecting one of the tools or one of the faces always led to 
the scenes, while the other tool or face led to the body parts. This 
structural equivalence allowed us to dissociate behavior consistent 
with model-based and model-free learning approaches because only 
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model-based learners automatically generalize experiences across the 
equivalent start state options. Specifically, they compute each option’s 
value prospectively in terms of its expected second-stage consequences. 
For this reason, for a model-based learner, each outcome at the second 
stage should have equivalent effects on first-stage preference on the next 
trial, regardless of whether the new trial starts with the same state as 
its predecessor (for example, faces followed by faces) or a different one 
(for example, faces followed by tools; Fig. 2a). In contrast, a canoni-
cal model-free learner evaluates options in terms of the outcomes they 
have previously produced. Outcomes received following one start state 
will not affect subsequent choices from the other start state (Fig. 2b). 
Importantly, although generalization indicates that choices effectively 
take account of the sequential contingencies, such an effect might in 
principle be supported by some computation that does not involve the 
prospective contemplation of future paths at choice time. For instance, 
a reward might be credited, at the time of receipt, to both choices that 
might have produced it4,7. Similar nonprospective mechanisms for 
model-based evaluation can apply more generally to arbitrary tasks19.

We analyzed how choices were influenced by preceding  
rewards to investigate model-based and model-free influences on 
choice. Consistent with previous reports using similar tasks11–13,22, 
evidence of both strategies was observed in behavior. Significant  
generalization of rewards was observed between equivalent start states  
(P = 2.4 × 10−5), but still larger effects of rewards were observed when 
the start state remained the same (P = 0.0036; Fig. 2c, Online Methods 
and Supplementary Table 1), with notable individual variation in the 
relative balance of these effects.

Model-based behavior involves neural prospection
As mentioned, while the behavioral findings demonstrate that choices 
reflect the state transition structure, behavior alone does not establish 
whether this dependence involves prospective evaluation at choice time. 
To investigate this, we first took advantage of between-subject variability  
in behavioral strategies together with the patterns of blood-oxygen- 
level dependent (BOLD) responses to task stimuli, which recruit  
dissociable regions of the visual and temporal cortices24 (Fig. 3a,b). 
We hypothesized that if model-based choices arise from prospective 
evaluation at choice time then subjects relying on this strategy should 

show neural correlates of states they planned to visit, with the degree of 
the neural effect reflecting variability in the behavioral strategy.

We assessed this prospective activation using BOLD activity in 
category-specific regions defined per-subject from an independent 
functional localizer (Online Methods). We included nuisance vari-
ables in the model to control for all categories of on-screen events and 
their durations, in order to account for residual visual effects from the 
previous trial that might contaminate estimation of prospective activ-
ity. Further, to avoid confounding any prospective activation related to 
the chosen option with activation related to the actual visual presenta-
tion of the end-stage stimuli that follow, this analysis was restricted 
to randomly interspersed catch trials. On these trials, the first stage 
proceeded as usual but was followed by the presentation of two gray 
boxes rather than the end-stage states.

We found that the strength of prospective activation of the chosen 
versus unchosen second-stage categories correlated positively with 
the relative strength of model-based choice behavior across subjects  
(estimate = 0.46, χ2(1) = 4.4, P = 0.036, Fig. 3c, Supplementary Table 1,  
Online Methods general linear model (GLM) 1). This result is  
consistent with model-based choices being computed by prospective 
evaluation at decision time, as has been widely speculated. To control 
for the possibility that this correlation was affected by differences 
across subjects in the patterns of visual experience arising from choices 
that were more or less model based (for example, because model-free 
choices produce more alternation in the encountered second-stage 
state), we reestimated prospective activation on the subset of catch 
trials in which subjects visited the same second stage as in the previ-
ous trial. In this more stringent analysis, which equates previous-trial 
visual experience across subjects regardless of their choice strategy, 
the positive relationship between prospection and model-based choice 
remained significant (estimate = 0.38, χ2(1) = 4.94, P = 0.026).

Neural prospection relates to other neural signatures of 
model-based decision variables
Next we considered whether neural evidence for prospection also 
related to neural signatures of trial-by-trial decision variables, which 
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predictions. Separate values are learned for the actions at the different 
start states, so outcomes only affect subsequent choice on trials  
with the same start state. Panels a and b produced from generative 
reinforcement learning model task performance (Online Methods), with weighting parameter w specifying fully model-based (w = 1) and fully model-free 
learning (w = 0), respectively. (c) Observed data indicate the presence of both effects. The effect of previous reward on choice (estimate = 0.47,  
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have also previously been shown to reflect evidence of model-based 
influences11,12,23. Neural correlates of the expected value of chosen 
options have been reported throughout frontal cortex, often reflecting 
the difference in value between chosen and unchosen options23,25,26, 
which we express in units of probability as the likelihood assigned by 
the reinforcement learning model to the chosen (versus unchosen) 
option12,27. In some areas, such correlations have a negative sign (that 
is, activity correlates positively with unchosen minus chosen value), 
perhaps reflecting the relative value of alternatives or switching26–29. 
Since model-based and model-free methods differ in how they compute 

expected value (for example, via prospection or reward history, gen-
eralizing or not between start states), these influences on trial-by-trial 
neural value signals are dissociable, analogously to choice behavior. 
We looked for correlates of these different first-stage choice values in 
the brain. Specifically, we modeled the first stage of the task with two 
parametric regressors (Online Methods, GLM2). The first regressor 
encoded the time series of reinforcement learning model–estimated 
probabilities of selecting the chosen stimulus on each trial for a model-
free learner. The second regressor encoded the difference in these choice 
probabilities between a model-based and model-free learner, allowing 

us to recognize, by any positive loading on this 
regressor, the extent to which neural signals 
reflect any specifically model-based influences 
over any model-free ones12.

This analysis identified a number of regions 
in the frontal cortex that correlated negatively 
with the first-stage choice probabilities—that 
is, activity correlating positively with the rela-
tive value of the unchosen option (Fig. 4a,b 
and Supplementary Tables 2 and 3)—for both  
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Figure 3 Neural evidence of prospective activation correlates with model-
based behavior. (a,b) Example subject regions of interest (ROIs), derived 
from independent functional localizer, for body parts (a) and scenes (b) 
(see Supplementary Fig. 2 for group-level depiction of these ROIs).  
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start stage on catch trials (68 randomly interspersed trials in which no 
second stage occurred) as a contrast of chosen second-stage state relative 
to the unchosen one in the relevant ROI (body parts or scenes; individual 
scores are averages of the two contrasts). Prospective activation correlates 
positively with tendency to make model-based choices (estimate = 0.46, 
χ2(1) = 4.4, P = 0.036). Lines depict group-level linear effects and 95% 
confidence curves.
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Figure 4 Correlates of choice probabilities 
derived from chosen minus unchosen values 
estimated by model-free and model-based 
learning at the task’s first stage. Highlighted 
regions show negative correlation (that is, 
activity correlates positively with unchosen 
minus chosen value) for (a) model-free 
choice probabilities and (b) the difference 
between model-based and model-free choice 
probabilities, the latter difference isolating 
activity significantly related to model-based 
rather than model-free learning. Bold response 
in dmPFC (left in a and b; model-free peak:  
8 30 34, P = 0; model-based – model-free  
peak: 12 34 16, P = 3.9 × 10−7) and FPC (right 
in a and b; model-free peak: −40 44 12,  
P = 2.5 × 10−11; model-based – model-free  
peak: 26 56 6, P = 2.9 × 10−8) correlates 
negatively with both regressors (Supplementary 
Tables 2 and 3). Cluster P values corrected for 
family-wise error for whole-brain comparisons. 
Maps thresholded at P < 0.001, uncorrected  
for display purposes. L, left. Color maps reflect 
t statistics, ranging from 3.6 to 8.7. (c,d) Effect 
size (from b) of model-based (MB) (minus 
model-free (MF)) unchosen choice probabilities 
in dmPFC and FPC correlate with the tendency 
to make model-based choices across subjects. 
(c) dmPFC (estimate = 0.45, χ2(1) = 3.89,  
P = 0.049). (d) FPC (estimate = 0.55, χ2(1) = 
6.4, P = 0.011). Lines depict group-level linear 
effects and 95% confidence curves.
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model-free and model-based (minus model-free) regressors.  
Consistent with previous reports26–30, this activation was 
seen in the BOLD response in dorsomedial prefrontal cortex 
(dmPFC; including anterior cingulate and mid-cingulate cor-
tex (model-free peak: 8 30 34, P = 0; model-based minus model-
free peak: 12 34 16, P = 3.9 × 10−7) and lateral frontopolar cortex 
(FPC; model-free peak: −40 44 12, P = 2.5 × 10−11; model-based 
minus model-free peak: 26 56 6, P = 2.9 × 10−8). Focusing on 
these activations, we asked whether the size of the model-based  
relative valuation effect (unchosen minus chosen) related to the degree 
to which subjects’ choices were model-based relative to model-free.  
Across subjects, the size of the model-based effect in dmPFC and in 
lateral FPC correlated significantly with the behavioral tendency to 
make model-based choices (Fig. 4c,d; dmPFC: estimate = 0.45, χ2(1) =  
3.89, P = 0.049; FPC: estimate = 0.55, χ2(1) = 6.4, P = 0.011). These 
results link the neural correlates of decision variables used by a model-
based learner with model-based choice in the task.

We next assessed whether the neural markers of prospection and 
model-based valuation covaried on a trial-by-trial basis. We reasoned 
that if these model-based decision variables themselves arise from 
prospective computation then these two neural signatures should 
also relate to one another. Trials with greater prospective activation, 
for example, should be accompanied by a stronger representation of 
model-based choice probability. We estimated neural prospection on 
each catch trial and entered this time series into subsequent models 
(Online Methods, GLM3) of dmPFC and FPC BOLD response, using 
functional regions of interest defined from the parametric effect of 
unchosen minus chosen choice probability (Fig. 4b). This analysis 
revealed a significant interaction in the dmPFC of model-based choice 
probability on catch trials and prospection (model-based × prospec-
tion mean = 4.35, t(19) = 2.19, P = 0.041; model-free × prospection 
mean = −0.23, t(19) = −0.13, P = 0.9). The effect in FPC trended in the 
same direction but did not reach significance (model-based × prospec-
tion mean = 3.05, t(19) = 1.79, P = 0.088; model-free × prospection 
mean = 3.28, t(19) = 1.27, P = 0.22). These results are consistent with 
the hypothesis that prospective computations also underlie the com-
putation of neural decision variables of the sort that have previously 
been taken as a signature of model-based computations.

Prediction error signals are related to model-free behavior and 
reduced prospective neural activity
Having established a relationship between prospective neural  
activation, model-based valuation and model-based choice behavior,  

we next sought to investigate how all these quantities relate to  
previously identified trial-by-trial neural signatures of model-free 
learning. Learning of model-free values is widely believed to be driven 
by reward prediction errors, whose correlates are often observed in 
striatum31. We hypothesized that prospection might relate negatively 
to any such signatures since model-free learning represents an alter-
native approach to solving the task.

Although prediction error signals have been shown in other con-
texts to reflect contributions of both model-based and model-free 
value expectations12, some prediction errors in the current task are 
expected to be purely model free. This is because a model-based 
learner would base reward expectations on the deterministic transi-
tion structure of the task and therefore would experience no predic-
tion error (change in reward expectation) when transitioning between 
task stages (in contrast to results previously reported in a task with 
stochastic transitions12). Conversely, for a model-free learner, a pre-
diction error is encountered as the difference in the expected val-
ues of the chosen options in the second and first task stages (Online 
Methods equation (4)), which generally will not match because of 
a failure to generalize between start states. Thus, prediction error 
activation accompanying stage transitions is expected, in the current 
task, to be a unique and affirmative signature of the extent to which 
subjects employ model-free learning.

We observed such activation in several locations (Online Methods, 
GLM2, Supplementary Table 4), notably the left putamen (Fig. 5a, 
peak: −24 8 −4, P = 0.0005, cluster corrected for family-wise error for 
whole-brain multiple comparisons), an area previously implicated in 
habitual, extensively trained and model-free actions23,32–34. Further, 
the size of this effect in putamen across subjects correlated negatively 
with the tendency to make model-based relative to model-free choices 
(Fig. 5b, estimate = −0.57, χ2(1) = 6.93, P = 0.008), confirming the 

z = –4

2

1

P
ut

am
en

 P
E

 a
ct

iv
at

io
n

0

–1

–1.5 –1.0 –0.5

MB – MF estimate

0 0.5 1.0

a

b

c

L y = 8

z = 2

z = –4

2

1

P
ut

am
en

 P
E

 a
ct

iv
at

io
n

0

–1

–2 –1

Prospective activation

0 1 2

Figure 5 Neural evidence of model-free prediction errors and correlates 
of prediction error with model-free behavior. (a) Putamen BOLD response 
correlates with model-free prediction errors (PEs) that accompany state 
transitions (peak: −24 8 −4, P = 0.0005, cluster-corrected for family-wise 
error for whole-brain comparisons; Supplementary Table 4). (b) Effect size 
of model-free PEs in putamen covaries negatively across subjects with the 
tendency to make model-based relative to model-free choices. Left: peaks 
28 10 2; 32 12 0 (P = 0.019), −26 12 −8 (P = 0.0826). Coordinates 
and P values here and in c (left panel) reflect small-volume correction for 
clusters in anatomical mask of striatum. Right: correlation estimated from 
average activity in significant clusters depicted in a, restricted to striatum 
(estimate = −0.57, χ2(1) = 6.93, P = 0.008). (c) Neural measures of  
model-based prospection and model-free PE negatively correlate.  
Left: clusters showing across subject negative correlation of model-based 
prospection and model-free PE. Peaks: −26 2 −4 (P = 0.032), 28 10 
10 (P = 0.001). Right: correlation estimated from average activity in 
significant striatal clusters depicted in a (r = −0.73, P = 0.0003). Lines 
in a and c depict group-level linear effects and 95% confidence curves. 
Maps thresholded at P < 0.001, uncorrected for display purposes.  
Color maps reflect t statistics, ranging from 3.6 to 9.3.
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theoretical prediction that these signals should correspond specifi-
cally to model-free choice. Together, these results show affirmative 
neural correlates of each behavioral strategy. Neural prospection 
effect size correlated with the degree to which behavior was model-
based, and prediction error effect size in putamen correlated with the 
degree to which it was model-free. This affirmative demonstration 
of neural correlates of each strategy helps to rule out the possibility 
that positive covariation between model-based learning and prospec-
tive activity in stimulus-sensitive areas was driven by more generic  
differences in motivation or attention. A second affirmative neural 
signature of model-free learning was also observed in the inferior 
frontal gyrus using a simpler contrast between trials in which the  
first-stage state changed rather than staying the same (Online 
Methods, GLM4, Supplementary Fig. 1).

Finally, we sought to determine the relationship between the neural 
signatures of prospection and prediction error. We did this by exam-
ining how they covary across subjects. (These measures could not be 
compared across trials within a subject because the prospection index 
is only defined on catch trials and the prediction error only on non-
catch trials, when the second stage actually appears.) Supporting their 
dissociability, the neural signatures of the two strategies were inversely 
related: the size of the neural prospection effect correlated negatively 
with that of striatal model-free prediction error activity (r = −0.73,  
P = 0.0003, Fig. 5c). These results support the hypothesis that learning 
from prediction errors and prospective anticipation of future states 
represent alternative mechanisms for evaluating candidate actions 
that underlie model-free and model-based influences on choice.

DISCUSSION
These results demonstrate a relationship between behavioral and 
neural signatures of model-based evaluation and prospective neural 
computation at the time of choice. While it is often assumed that 
model-based reinforcement learning arises from forward-looking 
computations, direct evidence has been lacking, and indeed some 
evidence suggests that alternative, nonprospective computations 
may also support these phenomena4,5. Here we demonstrate that 
neural evidence of prospection correlates with the degree of model-
based influences on both choices and neural decision variables and,  
furthermore, show evidence that this prospective evaluation mechanism 
trades off against prediction error signals for model-free learning.

Across species, both choices and accompanying neural activity have 
repeatedly been shown to reflect knowledge from a cognitive map or 
model. However, such effects need not in principle arise from pro-
spective computation at the time of choice. Alterative computational 
accounts show that model-based behavior can arise, for example, by 
precomputing the results of a tree search17,18. Some evidence for such 
precomputation has been reported in humans21. A related approach 
is to generalize feedback when an outcome is received to the multi-
ple actions that could have produced that outcome. Indeed, several 
studies have shown that apparently model-based choices are related 
to neural measures at the time of feedback rather than at the time 
of choice4,5,20,35. In the current task, for example, assigning credit 
from outcomes to both equivalent start stage actions would produce 
model-based behavior (but not neural prospection) through model-
free updating methods. Though such generalization is not mutually 
exclusive and could also contribute, our results provide affirmative  
evidence for an alternative, prospective mechanism supporting 
model-based behavior and neural decision variables. These results 
have close parallels with the rodent literature on spatial navigation, 
where animals can solve navigational problems such as latent learning  
that require planning routes using a cognitive map36. A candidate 

mechanism to support this ability is prospective representations of 
potential future spatial locations in hippocampal place cells14,15, but 
since such neural recordings have not yet been paired with behavioral  
manipulations demonstrating map-based choice, this connection 
remains to be directly established.

Our results establish a relationship between prospective neural 
activity and model-based choices, but owing to temporal limitations 
of fMRI they do not speak to the detailed dynamics by which this 
prospection occurs. Although some computational models envision 
a state-by-state traversal of the future decision tree37, our data are  
compatible with many variant algorithms that share the key feature 
of predicting future states, but in various different orders or groups19. 
One promising candidate approach is to incorporate a predictive world 
model at the representational stage, representing states or actions in 
terms of the states or actions to which they are expected to lead38,39. 
Indeed, evidence suggestive of such representational shifts has been 
observed in the brain during incidental statistical learning tasks16,40, 
though this has not previously been connected to model-based 
choice behavior. In the current task, this would amount to learning to  
represent the first-stage options by retrieving a representation of the 
second-stage options they produce. While such a predictive representa-
tion is consistent with our data—and with our conclusion that model-
based choice is supported by retrieving future states from a learned 
predictive model—other superficially similar but nonpredictive  
representational schemes are not. For instance, equivalent start 
actions might be represented in terms of one another41, which would 
support generalization between them behaviorally but would not  
produce neural activity selective for their shared future state at choice 
time. In general, representing actions in terms of their future conse-
quences is closely related to another set of questions that have been 
studied in behavioral neuroscience, representation of hierarchical  
structure or temporal abstraction—for example, ‘chunking’ of state 
or action sequences into a unit. Taking account of such structures 
simplifies computation39,42,43 by capturing aspects of the predictive 
regularities of events, much as in a world model.

In addition to the neural signals of prospection, we observed  
neural correlates of model-based decision variables in the dmPFC and 
FPC, both areas associated with representation values for unchosen 
or alternative actions. While the specific computational role of the 
dmPFC is debated29,30, this region has been repeatedly implicated 
in the relative valuation of different courses of action, and, as such,  
signals there are appropriate for dissecting model-based versus 
model-free components of these valuations. (In the present data set, 
we did not observe strong value-related activity at the first choice 
stage in the ventromedial prefrontal cortex, another frontal area that 
has been associated with model-based valuation of chosen actions23.) 
Like choice behavior, model-based influences on neural decision  
variables of this sort have been previously taken as a signature of 
model-based evaluation12,23,44, and, as for choice behavior, the  
question arises whether these effects actually result from prospection.  
Consistent with this hypothesis, the strength of this effect in the 
dmPFC covaried significantly with neural prospection.

A second widely observed correlate of neural decision variables is 
reward prediction errors, which, although they can be influenced by 
model-based valuations as inputs12, are believed to be involved in the 
learning of model-free evaluations. This leads to the expectation that 
such signals should trade off against prospection. The correlation of 
putamen activation and model-free prediction errors in the current 
study is consistent with the involvement of the putamen in habitual, 
extensively trained and model-free actions23,32–34. Activation in the 
putamen was indeed positively associated with model-free behavior,  



©
20

15
N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

�  advance online publication nature neurOSCIenCe

a r t I C l e S

and it also was negatively associated with the neural prospection 
measure that accompanied model-based behavior, suggesting that 
these two behavioral strategies rely on two distinct neural signals.

These findings reveal a neural signature of model-based evaluation, 
which directly supports the widespread supposition that model-based 
preferences are computed by prospective evaluation. This signature 
bears the expected relationships to previously reported behavioral 
and neural correlates of model-based learning and, notably, relates 
negatively with neural prediction error signals that are thought to 
drive an alternative, model-free strategy for evaluation. By character-
izing the distinct mechanisms driving model-based versus model-
free decisions, these findings also have implications for maladaptive 
decision-making. Disorders such as addiction are characterized by an 
apparent failure to account for the future consequences of behavior, 
which may relate to an over-reliance on model-free evaluation45–47. 
A greater understanding of when and how decisions are made pro-
spectively may guide interventions to shift the balance in favor of 
future-oriented processes.

METhODS
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the  
online version of the paper.
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ONLINE METhODS
Subjects. 23 subjects (13 female, mean age = 23.8 years, s.d. = 4.6) were recruited 
from the NYU community. No statistical tests were used to predetermine the sam-
ple size, but this sample size is within the standard range in the field. One subject 
aborted the experiment, and behavior of two more was better fit by a null baseline 
model (see below) than the task model, which hybridizes model-based and model-
free solutions, and so they were excluded from all analyses. Subjects were paid $30 
in addition to their earnings on 20 randomly selected trials on the two-stage deci-
sion task. Subjects provided informed consent to participate in the study, which 
was approved by New York University’s human subjects committee.

Tasks. Functional localizer. We used blocked functional localizer runs to iden-
tify subject-specific regions of interest (ROIs) that responded differentially to 
each task state (faces, body parts, tools, scenes). Two runs before and two after 
the two-stage decision task were completed. In each localizer run, 14-s image 
blocks were followed by 14-s rest blocks. In each image block, 20 images (either 
faces, tools, scenes, body parts or scrambled tools) were presented in randomized 
order for 300 ms, with a 400-ms inter-stimulus interval. Each category of image 
block recurred three times per run. During the functional localizer, subjects 
were instructed to attend to the images on the screen and respond by button 
press when a small black dot appeared somewhere on an image (10% of images, 
randomly interleaved). The images in the first two (pre-task) localizer runs were 
the 8 stimuli used in the subsequent two-step task. The images in the final two  
(post-task) runs were 20 novel exemplars from the same categories.

Two-stage decision task. Subjects completed 272 trials of a two-stage decision 
task in four runs of 68 trials (Fig. 1). On each trial, the first stage began on one 
of two randomly chosen start states (either the face or tool state). Selection of 
one of the two first stage stimuli resulted in transition to the second task stage, 
which also consisted of two possible states (body parts or scenes). Transition 
from the first stage to the second stage was deterministic: selection of one face 
or the equivalent tool always led to the body part state in the second stage, while 
selection of the other face or equivalent tool always led to the scene state in the 
second stage.

Selection between stimuli in the second stage (body part or scene state) pro-
duced a reward ($1 or $0) with a randomly and slowly diffusing probability 
between 0.25 and 0.75. To encourage visitation of both second-stage states over 
the course of the task, expected values of each were made equal over the length 
of the experiment: the Gaussian random walks that controlled the reward prob-
abilities for each stimulus in one state were temporally reversed to set the reward 
probabilities for each stimulus in the other state. Left/right presentation of the 
stimuli in each stage was randomized from trial to trial.

To avoid confounding prospective activity related to the chosen option with 
activity related to the actual visual presentation of the end-stage stimuli that  
followed (Fig. 1a), 68 of the 272 task trials were selected as catch trials  
(17 randomly selected per run, excluding the first 5 trials of the first run, and  
with the condition that catch trials be separated by at least one non-catch trial). 
On these trials, first-stage action selection was followed by the presentation of  
two gray boxes instead of the two stimuli in the chosen second-stage state.

Subjects had 2.5 s to respond at each stage. After stimulus selection, the chosen 
stimulus immediately rose to the top of the screen, while the unchosen stimulus  
dimmed and disappeared. On catch trials, the chosen first stage stimulus  
also disappeared. Failure to respond within the response window aborted 
the trial (red Xs appeared over all stimuli). Outcomes ($1 or $0) appeared on 
screen for 1.5 s. Trials were separated by a jittered intertrial interval (durations 
drawn from an exponential distribution with mean 3 s). Remaining time in the 
response window of each stage (2.5 s – reaction time) was added to the subsequent  
intertrial interval.

Before entering the scanner, subjects were instructed on the rules of the task 
and practiced 50 trials with different stimuli (Tibetan characters). Subjects were 
informed that the catch trials were randomly interspersed in the task and could 
not be predicted, and that choices would not influence catch trial occurrence 
in any way.

Behavioral analysis. Following previous work12,48, we fit the choices from  
the decision task in two complementary ways: by using a full reinforcement  
learning model that nests both model-based and model-free approaches  
and by using a simplified logistic regression model that captures the essence  

of both learning approaches more qualitatively by examining only the effect  
of the most recent trial’s outcome on choice.

Multilevel logistic regression. We fit multilevel logistic regression models to 
the choices from the decision task using the lme4 package (http://cran.r-project.
org/web/packages/lme4/index.html) in the R statistical language (http://www.
r-project.org/). All coefficients (exclusive of fMRI covariates described below) 
were taken as random effects—that is, varying from subject to subject around 
a group mean.

For each subject, choice of a first-stage action on each trial was regressed onto 
the choices and rewards from the previous trial. The pattern of these dependen-
cies distinguishes signatures of model-based from model-free strategies (Fig. 2). 
Specifically, the binary dependent variable was choice of actions that produce the 
body parts state versus choice of actions that produce the scenes state. Explanatory 
variables for each trial i were, in addition to an intercept, the previous reward ri−1, 
and the previous choice ci−1 to capture any tendency to repeat or switch actions 
regardless of reward. Critically, to assess whether the effect of experience in one 
start state is carried over to the equivalent action in the other state, a binary 
explanatory variable (samei) was included. The variable samei, which indicates 
whether the current start state was the same or different from the start state on 
the previous trial, both was entered alone and interacted with ri−1 and ci−1.

In this regression, the main effect of the previous reward ri−1 on choice indexes 
model-based choice because it carries over to the next trial even when start  
states change (samei = 0), whereas the interaction term ri−1 * samei captures 
any reward effects are that specific to the state in which they were received  
(samei = 1) and thus indexes model-free choice. We used the difference between 
the model-based and model-free coefficients to assess the relative weighting of 
each strategy in each subject’s choices (Fig. 2) (this is analogous to the weighting 
parameter w in the computational model; see “Computational model” below and 
Supplementary Table 1).

To test whether per-subject measures of BOLD activation related to model-
based or model-free learning, we used fMRI activity to create additional explana-
tory variables for the above regression model of choices, so as to estimate whether 
the relevant choice effects changed as a function of (that is, interacted with) the 
BOLD-derived covariate. (This is analogous to estimating parameters separately 
from the choices and the fMRI activity, then testing whether they correlate with 
one another, but by testing these effects within the behavioral model, we explicitly 
account for uncertainty about the estimated behavioral coefficients rather than 
treating them as point estimates.) Specifically, one fMRI-derived estimate for 
each subject (Z-scored effects from the models of the fMRI time series described 
below) was entered into the regression model, fully crossed with the rest of the 
factors to produce a set of additional explanatory variables measuring the interac-
tion between the BOLD measure and each of the other explanatory variables.

Since the difference between the coefficients for ri−1 and ri−1 * samei is our 
index of the relative weighting of model-based and model-free learning, we 
analogously measure the extent to which this weighting changes with the neural 
covariate by testing the difference from zero between the coefficients measuring 
the interactions of the BOLD covariate with the model-based (ri−1 * covariate) 
and model-free (ri−1 * samei* covariate) terms. This contrast deviates positively 
from zero for covariates that are increasing as net model-based choice increases, 
and negatively from zero for covariates that are decreasing.

We estimated five such models relating BOLD activation to first-stage decision 
task choices. The BOLD covariates in these models were, first, prospective activa-
tion (Fig. 3c, see “fMRI analysis” below, GLM1); second and third, dmPFC and 
FPC model-based relative valuation of first stage choices, respectively (Fig. 4c,d; 
see “fMRI analysis,” GLM2); fourth, putamen PE activation (Fig. 5b,c right panels;  
see “fMRI analysis,” GLM2); fifth, inferior frontal gyrus response to changes of 
first-stage states across trials (Supplementary Fig. 1b, GLM4).

In addition to the multilevel models, in order to ensure that subjects’ choice 
behavior was interpretable, we fit this logistic regression model (without cov-
ariates from fMRI data or multilevel structure) separately for each subject and 
compared model fit quality to an intercept-only (baseline) model, controlling 
for the different number of parameters in each model with Akaike’s information 
criterion49. Two subjects were better fit by the baseline model, indicating their 
choices were not significantly related to any of the feedback in our task, and were 
excluded from subsequent analysis.

fMRI procedures. Gradient echo T2*-weighted echo-planar images (EPI) with 
blood oxygenation level dependent (BOLD) contrast were collected on a 3-T  

http://cran.r-project.org/web/packages/lme4/index.html
http://cran.r-project.org/web/packages/lme4/index.html
http://www.r-project.org/
http://www.r-project.org/
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Siemens Allegra MRI scanner. Forty axial slices (3 × 3 × 3 mm voxels)  
were acquired in oblique orientation of 30 degrees to the anterior commissure–
posterior commissure line, with a repetition time (TR) of 1,750 ms, TE of 17 ms, 
80° flip angle, 240 mm × 192 mm field of view. A high-resolution T1-weighted 
anatomical image (magnetization-prepared rapid-acquisition gradient echo 
sequence, 1 × 1 × 1 mm voxels) was also collected.

Preprocessing and analysis were conducted with SPM8 (Wellcome Trust 
Centre for Neuroimaging, http://www.fil.ion.ucl.ac.uk/spm/). Region of inter-
est (ROI) analyses were conducted with the MarsBaR toolbox (http://marsbar.
sourceforge.net/). Functional images were realigned for head motion, coregis-
tered across runs and to the structural image, resampled to 2 × 2 × 2 mm voxels 
and smoothed with an 8-mm FWHM Gaussian kernel.

We present analyses in both native subject brain space (for those involving 
ROIs based on image category specific activity estimated per subject from sepa-
rate localizer runs), and normalized to the Montreal Neurological Institute (MNI) 
template (with SPM8 “segment and normalize”). In all general linear model 
(GLM) analyses of the fMRI time series, the first seven volumes of each run 
were discarded for equilibration, and data were high-pass-filtered with bandwidth 
128 s. Additionally, the six motion parameters from realignment and any scan-
ner spike artifacts were added as nuisance regressors to all GLMs. Regressors of  
interest were convolved with the canonical hemodynamic response function.

fmRI analysis. Localizer model and ROI selection. We first estimated a GLM of 
the time series in the four localizer runs (two pre- and two post-task runs). This 
model contained separate 14 s boxcar regressors for each of the five categories 
of stimuli (faces, tools, body parts, scenes and scrambled tools; only the first four 
were used in the construction of ROIs). Our analysis of prospective activation 
(GLM1) focused on ROIs that showed image category selective responses to the 
stimulus categories used in the second stage of the decision task (body parts and 
scenes). To restrict the body part– and scene-sensitive ROIs to regions most 
strongly associated with these stimulus categories and to eliminate any potential 
confound caused by categories recruiting overlapping brain regions, each ROI was 
obtained by taking the intersection of the three relevant contrasts in the temporal 
and occipital lobes (for example, scene ROI: intersection of scenes > body parts, 
scenes > faces, scenes > tools). These ROIs were obtained in each subject’s native 
brain space, where each contrast was thresholded at P < 0.001 (Fig. 3a,b; see 
Supplementary Fig. 2 for group level depiction of these ROIs). This approach 
did not identify ROIs for body parts in two subjects or for scenes for one other 
(non-overlapping) subject.

Two-stage decision task models. We estimated four GLMs of the two-stage 
decision task. With GLM1, we sought evidence of prospective activation. To 
assess prospective activation, GLM1 contained delta (stick) regressors at first-
stage (face and tool states) onset on catch trials indicating which of the two  
second-stage states subjects had chosen to visit (regressors: choose scenes and 
choose body parts). The model also contained separate regressors for each  
category of on-screen task event (faces, tools, body parts, scenes, aborted trials, 
wins, losses and catch trial gray boxes; each modeled with boxcars spanning the 
duration of each on-screen event). This model was estimated in native brain space 
for each subject for the average response across voxels in each of the relevant ROIs 
(scenes and body parts) derived from functional localizer data. We assessed the 
contrasts choose scenes > choose body parts in the scenes ROI and choose body 
parts > choose scenes in the body part ROI. The averaged results in the two ROIs 
for each subject provided an index of prospective activation, which was taken 
to the group level via entry as a covariate into the logistic regression analyses 
(Fig. 3c) and via correlation with the weighting parameter w estimated from the 
computational model fit (Supplementary Table 1). Three subjects had ROIs  
for only one of the categories (see above). In these cases, the estimated contrast 
for that single ROI served as the prospective index.

With GLM2 we assessed (in brains normalized to MNI coordinate space) 
BOLD correlations with the choice values of the two strategies at the first task 
stage (Fig. 4), and also with the model-free reward prediction errors at the sec-
ond task stage (Fig. 5). These parametric time series were derived from the full 
reinforcement learning model (see “Computational model” below), using each 
subject’s choice data and a single set of free parameters fit across all subjects 
(excepting the strategy weighting parameter w, which was set to 0 and 1), as in 
previous studies12.

In the first task stage, we modeled reinforcement learning model–estimated 
choice probabilities (see equation (7) for the two approaches). Specifically, delta 
regressors and parametric covariates were entered for the model-derived prob-
abilities of selecting the chosen stimulus under the model-free (w = 0) account, 
and also for the difference that arises when subtracting those probabilities from 
the probabilities given by the model-based (w = 1) strategy12. Note that by 
using regressors for both w = 1 and w = 0, GLM2 interpolates between these 
two extremes by fitting the neural activity with the weighted sum of these two 
regressors, thereby approximating the response for any w (ref. 12). In particular, 
the estimated weighting on the regressor encoding the difference in probabilities 
captures the extent to which the net neural activity more closely resembles the 
model-based rather than the model-free probabilities. In the second task stage, 
only model-free (w = 0) reward prediction errors were modeled (these errors are 
always zero under a model-based account; see equation (4)). GLM2 additionally 
contained nuisance regressors for the prediction errors at reward time (which are 
identical for model-based and model-free approaches; see equation (2)).

GLM2 effects were first taken to a second-level analysis by way of a one-sample  
t-test at each voxel (Figs. 4a,b and 5a). Effects were related to behavioral and 
neural quantities across subjects in two ways: first, by entry of per-subject 
covariates (neural prospection and model-based choice) into the whole-brain  
second-level analysis (Fig. 5b,c, left), and second, by reestimating, in each subject, 
the effects averaged across voxels in functional ROIs (putamen, dmPFC, FPC) 
defined by the group-level effects (Fig. 4b,5a). These resulting neural summary 
scores for each subject were then correlated with neural (Fig. 5c, right) measures 
and with behavior (Figs. 4c,d and 5b, right) via entry as a covariate into logistic  
regression analyses.

The putamen ROI (used in Fig. 5b,c, left) was defined as the clusters correlat-
ing with prediction error (Fig. 5a) that survived small-volume correction in an 
anatomical mask of striatum (P < 0.05). The dmPFC and PFC ROIs (used in  
Fig. 4c,d) were defined as the clusters correlating with the difference in model-
based and model-free choice probability (Fig. 4b) surviving correction for whole-
brain family-wise error due to multiple comparisons at P < 0.05. Note that the 
multiple comparisons involved in selecting the ROI on the basis of their being 
an overall main effect, on average across subjects, do not bias the subsequent, 
independent test of whether this contrast covaries, from subject to subject, with 
either the degree to which their choices were model-based versus model-free or 
the degree to which neural prospection was observed.

GLM3 was designed to assess the relationship of neural prospection to  
neural correlates of first-task-stage model-based valuation across trials. This 
model was computed separately for the average response across voxels in dmPFC 
and FPC. Functional ROIs in these regions were obtained from the negative main 
effect (Fig. 4b) of model-based valuation (see equation (7) and GLM2). To gener-
ate regressors for GLM3, we first estimated a trial-by-trial time series of neural 
prospection on catch trials in a model identical to GLM1 except for a unique 
prospection regressor on each catch trial. The resulting parametric prospection 
time series was then entered into GLM3. Also entered were the model-based and 
model-free first-stage relative valuations (on catch trials) for the unchosen stimu-
lus (such that the effect was oriented positively) and the interaction of the valua-
tions and prospection. The regressors of interest in GLM3 were the interaction of 
each of the valuation time series with the prospection series, which assess whether 
these quantities covary with one another across trials. This model included the 
same nuisance regressors as GLM2, and, because prospection was also entered, 
regressors for all on-screen visual events (as in GLM1) were also included.

With GLM4, we assessed activation that accompanied changes in first-stage 
state from trial to trial (Supplementary Fig. 1). This model was identical to 
GLM1, with two exceptions. First, it was conducted on images normalized to 
MNI coordinate space. Second, instead of delta regressors for expected outcomes 
at first-stage onset time on catch trials, there were instead delta regressors on 
each trial onset indicting whether the first-stage state was the same as or differ-
ent from the first-stage state on the previous trial (irrespective of whether the 
state was faces or tools). This contrast (different > same) was estimated for each 
subject and taken to a second-level analysis by way of a one-sample t-test at each 
voxel (Supplementary Fig. 1a). The model was reestimated in the left inferior 
frontal gyrus cluster surviving correction for multiple comparisons. The resulting 
individual subject contrast estimates were taken to the group level by entry as a 
covariate into the multilevel logistic regression (Supplementary Fig. 1b) and by 

http://www.fil.ion.ucl.ac.uk/spm/
http://marsbar.sourceforge.net/
http://marsbar.sourceforge.net/
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correlation with the weighting parameter w estimated from the computational 
model fit (Supplementary Table 1). Note that, as in GLM2, this ROI definition 
scheme does not bias the independent across subject correlations.

Computational model. In addition to the simplified linear regression analysis, 
which examines signatures of model-based and model-free learning in terms of 
how each trial’s feedback affects the next choice, we also fit each subject’s trial-by- 
trial choices using a full reinforcement learning model, in which the likelihood 
of choosing either action depends on its value, which is learned from the full 
sequence of rewards preceding it rather than just the single preceding trial 
(Supplementary Table 1). The model (a variant of a model used for many similar 
multi-step tasks11,12,22) explains choices as arising from a weighted combination 
of values learned according to both model-based and model-free approaches, 
and in fitting the model we estimate the relative weight of each sort of learning 
that best explains each subject’s choices.

The two-stage decision task dissociates the predictions of the model-based 
and model-free approaches, though in learning from the immediate rewards that 
follow second-stage choices there are no further state transitions remaining and 
so the approaches coincide. Here, for each of the two second-stage task states s2 
(body parts, scenes), state-action values Q2 are learned for each action a2 (each 
second-stage state having two such actions: a2 ∈ {a2X, a2Y}). These Q2 values 
are updated on each trial t when chosen 

Q s a Q s at t t t t2 2 2 2 2 2 2 2( , ) ( , ) ,= + a d  

where 

d2 2 2 2, ( , )t t t tr Q s a= −  

and α2 is a free learning rate parameter, controlling the effect of reward prediction 
error δ2 on action value update (received reward r = 0 or 1).

At the first task stage, the model-based and model-free strategies differ.  
The model-free approach, SARSA(λ) (state-action-reward-state-action temporal 
difference learning with eligibility trace parameter λ), learns a value, QMF , for each  
action a1 at each of the two first stage states s1 (faces, tools). The chosen action 
value in each state is updated on the basis of its outcome on each trial t as 

Q s a Q s at t t t t tMF MF( ) ( ), , , ,1 1 1 1 1 1 1 2= + +a d la d  

where 

d1 2 2 2 1 1, ( , ) ,( )t t t t tQ s a Q s a= − MF  

and α1 is a free learning-rate parameter. Note that the second-stage prediction 
error δ2 defined above differs from the model-free first-stage prediction error 
δ1 defined here, as rewards are available following choice only in the second 
stage. The prediction error following reward in the second stage, δ2, is used to 
update the value of the selected second-stage action value Q2 as written above, 
and also the value of the selected first-stage action by way of free eligibility trace 
parameter λ. The intermediate stage model-free prediction error defined here 
(which is nonzero for a model-free but not a model-based learner) is entered as 
a parametric time series in our neural analyses (Fig. 5a; GLM2).

Note that the model-free component updates the value of actions only when 
those actions are selected, and is thus unable to leverage the equivalency of the 
two first-stage states in making choices. The values of the equivalent actions 
in the tool and face states are each determined entirely and separately by their 
unique history of outcomes.

(1)(1)

(2)(2)

(3)(3)

(4)(4)

The model-based component uses a representation of the task’s state-action 
transition contingencies to prospectively compute the value of actions on the basis 
of the states and rewards that are expected to follow each action. In the current 
task, this corresponds to, at the first stage, for each candidate action, computing 
the estimates of rewards available at the second stage that would arise given the 
choice of that action. Thus, for each first stage state s1 and action a1, the model-
based action value QMB is 

Q s a Q S s a at t
a a X a Y

t tMB( ), max ( ( , ), )
,

1 1 2 1 1
2 2

= ′
′∈{ }  

where S(s1, a1) is the second-stage state that would be produced by choosing 
action a1 in the first-stage state s1, and the max measures the reward expected for 
whichever choice is believed to be better at that stage. Because the model-based 
component uses the task transition structure to evaluate first-stage actions in 
terms of the second stages to which they transition, this component effectively 
generalizes across the equivalent first-stage states in the task.

Finally, to model choices, the values of the two approaches in the first stage are 
combined according to free weighting parameter w (at w = 1, choice is exclusively 
model-based; at w = 0, exclusively model-free) as 

Q s a wQ s a w Q s at t t t t tnet MB MF( ) ( ) ( ), , ( ) ,1 1 1 1 1 1 1= + −

At the second stage, the model-based and model-free solutions are identical, so 
Qnet = Q2. The action values are used to compute the probability of each action 
via the softmax choice rule 

P a a s
Q s a
Q s at t

t

a t
( )

( , )
( , )

( )
( )

= =
′′∑

|
exp
exp

net

net

b
b

As this rule applies equivalently to the first and second stages, we denote actions 
a and states s generalized across stages (a ∈ {a1, a2}, s ∈ {s1, s2}). The softmax 
inverse temperature β controlling the noise in choices is estimated separately at 
the two task stages (β1, β2). The softmax choice probabilities for the first-stage 
chosen stimulus under a model-free (w = 0) and the difference in a model-based 
(w = 1) and model-free account were entered as a parametric time series in our 
neural analysis (Fig. 4a,b; GLM2)

Computational model estimation. We estimated the six free parameters (β1, 
β2, α1, α2, λ, w; Supplementary Table 1) of the hybrid model for each subject 
by maximizing the log posterior of the choice data conditioned on the outcomes 
acquired. We took as uninformative priors over the parameters, gamma(1.2, 5) 
for softmax temperatures (β1, β2), and beta(1.1, 1.1) for the remaining parameters 
(α1, α2, λ, w), consistent with previously observed estimates and reports12, and 
ensuring smooth parameter boundaries50.

As in previous studies12, we repeated this fitting procedure for fMRI analysis 
with the difference that a single set of parameters was fit across all subjects. These 
estimated parameters were used to generate time series for each subject that were 
entered into the general linear model of BOLD response.

A Supplementary methods checklist is available.
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