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Adaptive decisions are guided by past experience. Yet,

decisions are often made between alternatives that have not

been directly experienced before, requiring the integration of

memories across multiple past events. We review emerging

findings supporting at least two seemingly distinct mechanisms

for how the brain draws on memories in the service of choice.

Prospective integration is triggered when a new decision is

faced, allowing inferences to be drawn on the spot. A

complementary retrospective mechanism integrates existing

memories into a network of related experiences before a

decision is actually faced. We discuss evidence supporting

each of these mechanisms and the implications for

understanding the role of memory in decision-making.
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Introduction
Memory is central to adaptive behavior. To make flexible

decisions, organisms must draw on past experiences to

anticipate and evaluate the outcomes of different candi-

date courses of action. In short, choice depends on mem-

ory. Here we review a range of research in humans and

animals concerning how memories are retrieved and used

to guide value-based decisions. We focus particularly on

questions about when and in what order representations

of previous events are built and accessed, and how this

subserves the computation of decision variables to guide

flexible choice.

A key issue in decision making has been distinguishing

different systems for evaluating options. It is now widely

appreciated that seemingly the same behaviour — a lever
www.sciencedirect.com 
press or a turn in a maze — may in different circum-

stances arise from a number of different systems that are

psychologically, neurally, and computationally distinct.

Early research focused on simple ‘‘model-free’’ incre-

mental learning, associated with the midbrain dopamine

system [1,2]. This mechanism does not rely on memories

for individual past events; instead it tracks a summary,

like a running average, of the net rewards obtained

following different actions.

This review concerns a different — though itself not

necessarily unitary — class of decisions, which has been

defined, operationally, by challenging organisms with

choices that cannot be solved by simple model-free

learning [3,4]. Such problems present novel choice

options or changed circumstances, which require the

organism to flexibly draw on memories of past experi-

ences and generalize them to the decision at hand. The

key requirement is integrating information across distinct

past experiences. This is often necessary because the

consequences of most decisions unfold over multiple

steps — as in a chess game, or a maze. Formally, com-

puting the value of an action in such a circumstance

involves piecing together the series of consequences

expected at each step [5]. Even evaluating the simplest

choices–a lever press for food–requires integrating two

pieces of information, about the outcome identity and its

value. Oftentimes, we may not gain all this information

at the same time, which can make it impossible for

simple incremental learning mechanisms to track a

summary.

There are many examples of humans and animals dem-

onstrating such integrative reasoning in the laboratory.

This is the defining feature of a category of behavior

known as goal-directed action [3]. Neurally, there is

evidence that such behaviors depend on the hippocam-

pus and ventromedial prefrontal cortex, regions known to

be essential for the formation and retrieval of memories

[6]. Computationally, these behaviors have been associ-

ated with a family of theories known as model-based

reinforcement learning, which evaluate actions by putting

together information from a learned map or model of the

different associations in the task [7]. However, the set of

past experiences and possible future trajectories is vast,

and there exist many different ways of solving the diffi-

cult problem of accessing some manageable subset of

them to guide choice efficiently [5]. Accordingly, there

are many open questions about how and when the brain

puts together the pieces to produce an integrated decision

variable, and what this means for the different ways in

which memories can drive decisions.
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For concreteness, consider a representative task, known

as sensory preconditioning (Figure 1). Experience pro-

ceeds in several phases. In Phase I, subjects learn to

associate two neutral stimuli, A and B. In Phase II, subjects

learn that stimulus B predicts a valuable outcome, such as

money. In a final decision phase, subjects are offered a

choice between A and another equally familiar control

stimulus. Animals and humans tend to prefer A, indicating

that they have integrated information across the two dis-

tinct sets of associations (A ! B, B ! reward) so that they

come to attribute the reward value of B to A as well, despite

the fact that A was never actually rewarded.

The essential feature of this task, and many others like it,

is that subjects integrate information about A’s and B’s

associations that were obtained in separate episodes.

Participants’ behavior on these sorts of decisions clearly

reflects processes that are beyond the simple stamping-in

of any previous choice. Instead, they reflect what appear

to be inferences based upon integration of the different

elements.

A similar structure and logic are characteristic of a variety

of other experiments, from spatial navigation (latent

learning, shortcuts) [4] and instrumental conditioning

(reward devaluation) [8] to learning in multiplayer games

[9] and multistep decision tasks [10]. Research using all

these tasks demonstrates that, at least in some circum-

stances, subjects can integrate multiple distinct pieces of

evidence into a decision variable.
Figure 1
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Task for measuring flexible use of memory to guide value-based

decisions. In this ‘‘Sensory Preconditioning’’ task, participants first learn

to associate pairs of stimuli with each other (e.g., squares with circles of

different colors), without any rewards (association phase). Next, they

learn that one stimulus (e.g., the grey circle) leads to monetary reward,

while another (e.g., the white circle), leads to no reward (reward phase).

Finally, participants are asked to make a decision between two neutral

stimuli (blue vs. yellow squares; decision phase). Participants often

prefer the blue square to the yellow square or other neutral and equally

familiar stimuli, suggesting they have integrated the reward value with

the blue square because of the memory associating the blue square

with the rewarded grey circle. These sorts of tasks allow experimenters

to measure spontaneous memory-based flexibility without requiring or

rewarding it. In actual experiments, all stimuli are controlled for

familiarity, likeability, value, etc.
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But how, exactly, are such inferences produced? It is often

assumed that this sort of behavior demonstrates some-

thing like inferential reasoning, conducted at the time of

the decision. Yet this need not be the case. Instead, it is

possible that such behavior reflects integration processes

that happened earlier, before a decision was faced. Choice

behavior itself does not generally reveal when the com-

putations that produced it took place. Similarly, neuro-

scientific data — including pretraining lesions [11] or

neural correlates of the final, integrated decision variables

[10] — do not speak to this question. Recent work, much

of it using more finely targeted neural methods, has begun

to shed light on questions about how, when, and in what

order, memories are accessed to support flexible decisions

about novel choice options. We discuss experiments

supporting the decision-time account, and then a second

set of recent results suggesting that choices may instead

reflect integration of memories that had occurred earlier,

before a participant was ever asked to make a decision.

These processes may reflect different computational

strategies for model-based computation of decision vari-

ables [5].

Prospective integration
The hypothesis, implicit or explicit, behind much work

on flexible decision making, is that the decision itself

triggers the computation to evaluate the options, in which

subjects combine the relevant associations ‘‘just in time’’.

This is a strategy we broadly refer to as prospection

(Figure 2), since it involves forecasting the consequences

of some imminent potential course of action.

In some cases, it does seem almost a foregone conclu-

sion that subjects must evaluate an option at decision

time. For instance, when a truly novel option is intro-

duced — the very first time you face an exotic dish like

‘‘tea jelly’’ or ‘‘pea mousse’’ [12��], whose value might

be imagined only from the properties of its compo-

nents — it seems unlikely that the brain could possibly

have precomputed its value. Indeed, upon evaluating

tea jelly for the first time, fMRI adaptation effects

demonstrate that people access the separate component

elements, tea and jelly.

Other examples from both human neuroimaging and

rodent neural inactivation show that integrative, inferen-

tial reasoning in tasks similar to that of Figure 1 is

accompanied or supported by neural events happening

at the time decisions are faced [13–18]. In some of these

cases, inferential reasoning is accompanied by activity in

the hippocampus, presumably due to its role in support-

ing memory retrieval processes in service of inferences.

Other work has highlighted the importance of the orbito-

frontal cortex (OFC), consistent with the hypothesis that

the OFC supports the construction of value when an

organism is confronted with a new decision for which

precomputed values are not available [15,19].
www.sciencedirect.com
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Schematic of possible mechanisms underlying integration of memories

to guide decisions. When confronted with a new decision which

cannot be wholly based on past rewards, such as predicting whether

the blue square will lead to reward or not, participants’ behavior tends

to reflect the integration of memory for past relevant events. This

integration can happen via two distinct mechanisms. (a) One

possibility is that at the time of making the decision, participants

retrieve relevant memories and use them to engage in prospective

reasoning about the likely outcomes of their decisions. (b) Another

possibility is that the overlap in the memories themselves triggers

integration of distinct episodes during learning/encoding, before a

decision is ever confronted. In this sort of retrospective mechanism,

the attribution of reward value to the blue square would have already

been in place before a decision was ever required.
But perhaps the most mechanistically suggestive exam-

ples arise in rodent spatial navigation, where representa-

tions of an animal’s position (as represented by patterns of

activity in hippocampal place cells) can ‘‘run ahead’’ of

the animal’s position. This can be seen at choice points

[20], can predict the direction of the animal’s own subse-

quent locomotion [21], and can be integrative in the sense

of knitting together ‘‘subroutes’’ that have not actually

yet been experienced sequentially [22]. A related oscilla-

tion in spatial representation, theta phase procession, was

also shown to modulate in a way that reflected the

animal’s current spatial goal [23]. Similar anticipatory

representations in hippocampus and prefrontal cortex

have been observed in statistical learning tasks in humans

[24,25]. Such anticipatory or ‘‘preplay’’ activity is a prom-

ising substrate for prospective computation of the value of

actions. However, although hippocampal preplay appears

to support correct navigational performance on simple

spatial tasks [26,27], it has not so far been studied while

animals were performing behavioral tasks that specifically

require or demonstrate integrative, model-based decisions.

A recent experiment aimed to close this circle by linking

prospective neural activity to the flexible behavior it is

hypothesized to support in a single task [28]. This study

used a multistep reward learning task which, much like

sensory preconditioning, examined to what extent sub-

jects, when choosing an option, integrated information
www.sciencedirect.com 
about rewards recently received during other, interleaved

trials with different choice options. Choices resulted in

intermediate stimuli from fMRI-decodable image catego-

ries, allowing us to decode the prospective activation of the

future path at decision time. Such activity was correlated,

across both trials and subjects, with the extent to which

choices successfully reflected model-based integration.

Separate research in the cognitive neuroscience of mem-

ory has also suggested that there are important links

between memory for the past and prospective thoughts

about the future. This work started from the observation

that amnesic patients with severe memory loss also have

difficulty imagining future events [29,30]. Neuroimaging

studies in the healthy brain also link both retrieving

memory and imagining future events to activity in a

common set of structures, the hippocampus and sur-

rounding medial temporal lobe [31,32]. These studies

suggest a role for hippocampal memories in prospection

for decision making, though this was not tested directly. A

related line of evidence does suggest that prospective

thinking affects evaluation. Instructing human partici-

pants to imagine events in the future attenuates the

discounting of delayed rewards in an inter-temporal

choice task, an effect that is correlated with activation

of the hippocampus at decision time [33]. More recent

findings indicate a causal role for the medial temporal

lobe in this effect. This study found that, unlike healthy

controls, patients with anterograde amnesia following

damage to the MTL show similar amounts of discounting

regardless of whether they are asked to engage in pro-

spection or not [34��].

Retrospective integration
Despite much evidence for prospective integration mech-

anisms at decision time, there are also many intriguing

hints that seemingly similar behaviors can be produced in

a different way. Interestingly — returning to the case of

position representations in the rodent hippocampus —

representations of positions other than the current one do

not always run ahead of the animal. Indeed, similar

retrospective ‘‘replay’’ phenomena have also been

reported, in which place cells represent positions where

the animal has been in the past, including reverse replay

behind the animal [35], or replaying spatially remote

routes while the animal is pausing or asleep [36,37].

In a spatial task, the integration problem (analogous to

that of Figure 1) involves, in effect, propagating informa-

tion about reward availability to other, more distant

locations from which the reward might be reached. Since

replay events do not represent immediately available

trajectories, they could allow such integration to be pre-

computed, rather than evoked at decision time. Consistent

with this suggestion, reward receipt can trigger reverse

replay, ‘‘rewinding’’ the path that preceded it [35], and

this activity can even branch off to traverse an alternative
Current Opinion in Behavioral Sciences 2015, 5:85–90
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maze arm [38��]. Even more dramatically, observing re-

ward in an inaccessible, unexplored area triggers activation,

during a subsequent rest, of sequences of place cell firing

that later represent the path to the reward when the area is

explored [39��].

All of these dynamics strongly suggest a mechanism for

the integrative propagation of reward information oppor-

tunistically and ahead of time, rather than on-demand

when facing a decision. However, such retrospective

activity in rodents has not directly been linked to the

solution of behavioral tasks that demonstrably require

integration. Addressing this gap, retrospective integration

has also been examined in humans in the context of the

sensory preconditioning task of Figure 1. Although it is

possible to compute the value of A by evoking B (and

then reward) at choice time — a prospective approach —

it is equally possible that when B is evoked during Phase

2, this retrieves A, which is associated with reward at that

point (Figure 2). fMRI and MEG studies of this task,

using decodable image categories for the stimuli, support

this mechanism [40,41]. These studies demonstrate that

the flexible behavior at decision time — the tendency, for

example, to choose A — reflects processes that happened

earlier, during the learning phase. In particular, flexible

decisions are correlated with activity in the hippocampus

in the earlier learning phase, as well as with evidence for

specific reactivation of the A stimulus at the same time as

B is being rewarded. Earlier studies of several other

integration tasks suggested a similar mechanism [42–44].

Similar integration might also be supported by re-activat-

ing raw experience from Phases I and II during rest

periods or sleep following Phase II, driving new learning

about A via offline integration. In machine learning, such

replay-driven learning has been proposed in an architec-

ture called DYNA [45], which demonstrates how actual,

remembered, and model-simulated experiences can be

blended together for learning. Applied to biological learn-

ing [46], this mechanism might help explain why model-

based and model-free learning seem to share more neural

substrates — such as dopamine and reward prediction

errors — than previously expected [47–49]. Also, a recent

study [50��] showed that manipulating rest periods in a

revaluation design analogous to Figure 1 had effects on

humans’ success solving subsequent integration tests,

consistent with the idea that this behavior was supported

by processes occurring during rest. Night time sleep also

seems to specifically enhance such integration, as shown

using a transitive inference task in humans [51].

Conclusions and future questions
Altogether, data support the idea that memories are

retrieved and integrated to construct decision variables

at a variety of times, ranging from the time of encoding to

the time of decision. These mechanisms are clearly not

mutually exclusive, and indeed there is good evidence
Current Opinion in Behavioral Sciences 2015, 5:85–90 
supporting each of them. This raises a larger question,

though: how does the brain decide which sorts of strate-

gies to evoke under which circumstances?

Earlier work has considered rational accounts of the

tradeoff between model-based and model-free decision

making in terms of the relative costs (e.g., delay) and

benefits (e.g., better chance of gaining rewards) of pro-

spection at decision time, a tradeoff which will vary

depending on issues like the amount of time pressure

or training [7,52,53]. Prospective integration is highly

flexible and can in principle be applied to any new

situation. However, it depends on memory retrieval at

the time of choice and therefore can delay execution.

Retrospective integration is efficient and fast at decision

time, because it allows new decisions to depend on

integration that had been previously computed. Indeed,

there is some evidence that decisions based on retrospec-

tive integration can be computed as quickly as decisions

that require no integration at all [43]. This replay mecha-

nism also provides for an ongoing integration of past and

present experiences, connecting otherwise discrete

experiences into a networked web of memories. Howev-

er, precomputing all options is not possible and thus this

approach is well suited for integration of experiences that

already share overlapping elements, but not for integra-

tion in the service of truly new decisions.

If replay may also happen between experience and the

decisions it supports, then analogous questions — when

to replay? which events to replay? — might similarly be

understood in terms of rational analysis of costs and

benefits. Such prioritization has been the product of some

work in computer science [54] though — apart from a

finding that place cell sequences favor unexplored loca-

tions that contain reward over those without it [39] — there

is almost no neuroscientific data addressing this question.

More generally, this is a promising instance of a broader

trend in cognitive neuroscience toward rational cost-bene-

fit analyses of cognitive control phenomena [55,56].

A second question, which we largely skirted, is what sorts

of memory representations are operated on by the replay

and preplay operations we have considered. Classic work

on model-based decision making envisions that it oper-

ates over semantic representations (like maps), which

may themselves arise from the integration or average

over many distinct experiences [4]. Indeed, a similar

replay story — in the form of systems consolidation —

has been invoked to explain the formation of semantic

from episodic knowledge [57]. However, there has also

been increasing interest in the possibility that decisions

are themselves derived more directly from episodic in-

formation — that is, by retrieving representations of the

events on individual trials from working memory or

episodic memory [58,59��]. Interestingly, the hippocam-

pal memory system is thought to be involved both with
www.sciencedirect.com
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representations of individual episodes, and with more

general relational links derived from multiple experi-

ences (as in sensory preconditioning) [60]. It remains to

be understood to what extent the decision phenomena we

have examined are supported by one or the other or both

of these underlying representations [61].
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