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Abstract 

The purpose of exploration is to reduce goal-relevant uncertainty. This can be achieved by 
choosing to explore the parts of the environment one is most uncertain about. Humans, however, often 
choose to avoid uncertainty. How do humans balance approaching and avoiding uncertainty during 
exploration? To answer this question, we developed a task requiring participants to explore a simulated 
environment towards a clear goal. We compared human choices to the predictions of the optimal 
exploration policy and a hierarchy of simpler strategies. We found that participants generally explored the 
object they were more uncertain about. However, when overall uncertainty about choice options was 
high, participants avoided objects they were more uncertain about, learning instead about better known 
objects. We examined reaction times and individual differences to understand the costs and benefits of 
this strategy. We conclude that balancing approaching and avoiding uncertainty ameliorates the costs of 
exploration in a resource-rational manner.  

 
 
 
 

  



 

Introduction 

The purpose of exploration is to reduce uncertainty about the aspects of one’s environment that 
are goal relevant or otherwise important. Yet, devising an optimal strategy to reduce uncertainty is very 
difficult1–3, especially for agents with limited memory and processing capacities. A simple heuristic that is 
often efficient for exploration is focusing on the parts of the environment that one is most uncertain about. 
This principle of approaching uncertainty has been found useful by statisticians4,5, by researchers 
developing artificial intelligence6–9, and by cognitive scientists interested in understanding the exploratory 
behaviour of humans and other animals2,10. Indeed, humans have been shown to approach uncertainty 
when learning about rewards in the environment through trial and error2,11–13. However, there are also 
many examples of uncertainty avoidance in the decision making of humans and animals. Uncertainty 
avoidance has been documented in situations where resolving uncertainty may reveal negative 
outcomes14–18 or news19,20, or make overcoming a conflict in motivation more difficult20,21. 

Given prior evidence of both approaching and avoiding uncertainty, we asked how these two 
conflicting tendencies manifest when individuals choose what to explore. We addressed this question in 
two parts. First, we asked whether humans tend to approach uncertainty when exploring, and if so, what 
decision rule do they use to choose options they are more uncertain about. While the theory of exploration 
makes a strong case for approaching uncertainty as an efficient principle for exploration2,4,10, how humans 
implement this principle in their choices has yet to be determined, with several algorithms of varying 
sophistication suggested in the literature2. 

Second, we asked what conditions might compel individuals to avoid uncertainty instead of 
approaching it. We were interested in whether uncertainty avoidance would arise even when participants 
were clearly incentivised to resolve uncertainty about the environment. We hypothesized that the 
difficulty of making an exploratory choice might encourage avoiding uncertainty. Always approaching 
uncertainty may well be an efficient policy for an agent with unlimited cognitive resources. Since humans 
have finite memory systems, inference bandwidth, and time, it stands to reason that they would try to 
conserve these resources by regulating their exploration22. We reasoned that avoiding uncertainty could 
help reduce the strain on limited resources when making difficult exploration choices by lowering the 
amount of information that needs to be processed. 

We developed a task requiring participants to make multiple exploratory choices, incrementally 
building knowledge in the service of a distant goal. Importantly, participants were given reward feedback 
only at the end of a round and not after every trial, allowing us to focus on choices made to accumulate 
knowledge, rather than choices driven by the need to exploit available rewards. We designed a task that 
posed a challenging exploration problem for participants, taxing their memory and learning systems, as is 
typical in real-life exploration22,23. The task could nonetheless be captured by a few mathematical 
expressions, which permit the derivation of the optimal exploration policy. This optimal policy served as 
a basis for a quantitative analysis of participants’ behaviour with the aim of identifying the algorithm 
driving their exploratory choices24–26.  

Participants explored an environment comprising four tables, each with two decks of cards (Fig. 
1). The face of each card, which was hidden from view, could be either orange or blue. Participants chose 
to reveal a card on one of two tables presented to them as exploratory choice options. They made these 
exploratory choices with the aim of learning the difference in the distributions of colours between the two 
decks on each table. After a random number of exploration trials, participants’ learning was assessed on a 
separate test. Participants were rewarded solely for their performance on this test. We sought to explain 
how participants chose which table to explore given the sequence of cards they had already observed. 



 

  
Figure 1. Exploration with no immediate reward in an incremental learning task. a, Statistical structure of the 
task. Participants explored four tables, each containing two decks with different proportions of blue/orange cards. 
The goal was to learn the difference in proportions of the decks on each table. b, On a single exploration trial (left), 
participants chose between two tables, and then sampled a card from one of the decks on that table, observing its 
colour. After a random number of exploration trials, participants were tested on their knowledge (right). A colour 
was designated as rewarding, and participants then chose the deck with the highest proportion of the rewarding 
colour on each table. They were rewarded for correct test-phase choices, and received no reward during exploration. 
c, Participants played 18 rounds. The length of exploration in each round followed a shifted geometric distribution, 
such that the test was equally likely to occur following any trial after the first 10. d, We considered a hierarchy of 
strategies for choosing which table to explore. The normatively prescribed strategy is to choose the table affording 
maximal expected information gain. This is the table for which the next card is expected to maximally decrease 
uncertainty (measured as entropy H) about the value of the goal-relevant latent parameter θ, given observations thus 
far x. A simpler strategy is to choose the table with the maximum uncertainty, as it does not necessitate computing 
an expectation over the next observation. An even simpler heuristic is to equate previous exposure and choose the 
table with the least previous observations nx. Even though these three strategies vary considerably in complexity, 
they are all uncertainty-approaching on average. Lastly, people may be random explorers.  



 

We compared participants’ choices to a hierarchy of plausible strategies, differing in 
computational complexity (Fig. 1e). We found that on the majority of trials participants chose to explore 
the more uncertain table. However, when we examined behaviour as a function of difficulty we observed 
a systematic bias in their choices. Specifically, when choice difficulty was high, participants tended to 
avoid exploring the table they were more uncertain about. Surprisingly, participants who had a stronger 
tendency to avoid uncertainty learned no worse than other participants. Furthermore, reaction time data 
revealed that participants spent less time deliberating when making choices that avoided uncertainty. 
Altogether, these data are consistent with the idea that strategically balancing approaching and avoiding 
uncertainty serves to manage the use of cognitive resources during exploration. 

Results 

194 participants from an online pre-registered27 sample were recruited to complete up to 18 
rounds of the exploration task over four sessions. The task simulated a room with four tables, with two 
decks of cards on each table (Fig. 1a-b). If a card was flipped, it was revealed to be, for example, either 
orange or blue (each round used a different pair of colours). The proportion of orange vs. blue cards, π, 
differed between the two decks on each table. Participants’ goal was to learn sgn(π1-π2), or which deck 
had more orange (blue) cards on each table. We will denote this term, which serves as the learning 
desideratum for participants, as θ.  

The task began with an exploration phase, followed by a test phase. On each trial of the 
exploration phase participants chose which of two tables to explore, and then revealed one card from a 
deck on that table (Fig. 1b). Participants were instructed that the exploration phase would be followed by 
a test phase after a random number of trials (drawn from a geometric distribution to discourage pre-
planning, Fig. 1c). They were further instructed that one of the colours would be designated as rewarding 
at the beginning of the test phase. During the test phase, participants were asked to indicate which deck 
had more of the rewarding colour on each table (Fig. 1b). They also rated their confidence in the choice. 
For every correct test-phase choice they received $0.25. Crucially, they received no reward during 
exploration. 

Three Hypothetical Strategies Derived by Rational Analysis 
To explain how participants chose between tables in the exploration phase, we employed rational 

analysis24,25: we asked how an optimal agent might solve the problem of choosing which table to explore 
on each trial of the task. We limited our consideration to strategies that optimise learning only for the next 
trial, since a globally optimal strategy is intractable in our case2,3. We started by deriving the optimal 
strategy and progressively simplified it to generate two additional hypotheses. Despite varying 
complexity, all three strategies direct an agent using them to approach the options they are more uncertain 
about. 

The optimal strategy, given by the expression at the top of Fig. 1d, is choosing the table affording 
maximal expected information gain (EIG)4,28,29. EIG is the difference between the uncertainty in the value 
of the learning desideratum, θ, given observed cards x0:t, and the expected uncertainty after observing the 
next card on trial t + 1. In other words, EIG is the amount of uncertainty resolvable on the next trial. 

Computing the second term in the EIG expression requires averaging over future unseen 
outcomes, which may be beyond the ability of participants. As an alternative, they might avoid computing 
this term by simply choosing the table they were more uncertain about at the moment of making the 



 

choice (Fig. 1d, second tier)2. While this strategy has intuitive appeal, computing uncertainties may still 
be too complicated for human participants. An even simpler heuristic is given on the third tier of figure 
1d: choosing the table with the least prior exposure2,30, measured as the number of already observed cards 
nx. Since on average uncertainty is lower with more observations, this strategy is an approximate way to 
approach uncertainty. Finally, participants might explore at random, rather than in a directed manner2,31,32. 

Test Phase Performance Validates Observation Model 
To relate the three hypothesized strategies to participants’ behaviour, we first had to assume a 

model of participants’ beliefs about θ and the mechanism by which they updated these beliefs. We used a 
Bayesian observer model which forms beliefs about θ based on the actual card sequence each participant 
observed, and updates these beliefs according to Bayes’ rule (Fig. 2). The Bayesian observer is only a 
model of how participants are making inferences from observations, and is agnostic regarding which table 
or deck should be chosen for exploration. 

Before evaluating the hypothesised exploration strategies, we sought to validate the assumptions 
of the Bayesian observer model. To this end, we related the predictions of the Bayesian observer model to 
participants’ choices during the test phase. We predicted that test accuracy should be greater when the 
Bayesian observer model had low uncertainty about θ at the end of the learning phase. Using a multilevel 
logistic regression model, we confirmed that test accuracy was strongly related to the Bayesian observer’s 
uncertainty b=-5.54, 95% posterior interval (PI)=[-6.18, -4.93] (Fig. 3a, Table S2). Participants’ reports 
of confidence after making a correct choice also followed the Bayesian observer’s uncertainty b=-4.03, 
95% PI=[-4.51, -3.57]. After committing errors, participants’ reported confidence was lower overall b=-
1.07, 95% PI=[-1.25, -0.90], and considerably less dependent on Bayesian observer uncertainty, 
interaction b=-3.20, 95% PI=[-4.60,-1.93] (Fig. 3b, Table S3). 



 

 
Figure 2. Hypothetical strategies make differing predictions for exploratory choice behaviour. We computed 
the three quantities hypothesized to drive exploratory choices using a Bayesian observer model. To illustrate this 
process, we plot the derivation of Bayesian belief on a single trial (a) and across multiple trials (b, c). For 
visualization, we use a simplified version with two tables only. a depicts the Bayesian observer’s belief about a 
single table on a single trial. Given a sequence of previously observed cards (left), the Bayesian observer forms 
posterior beliefs about the proportion of orange cards in each deck (centre). These beliefs are expressed as Beta 
distributions. From these, it is possible to derive a belief about the difference in the proportion of orange cards 
between the two decks π1-π2 (right). The probability that π1>π2  is given by the proportional size of the area marked 
in grey (0.74 in this example). b Depicts the same process over a series of 20 trials. The observed card sequence for 
each table is presented at the top of each panel. The matching belief state about π1-π2 is plotted below it as an 
evolving posterior density in white (high) and black (low). The pink arrows mark the true value of π1-π2 for that 
round. As the round progresses, belief converges towards the true value, and becomes more certain. c, The three 
choice strategies prescribe different table choices on most trials. The difference between table 1 and table 2 in each 
of the three quantities (EIG, uncertainty and exposure) is plotted for each trial. This difference is the hypothesized 
decision variable for choosing between tables 1 and 2. A positive value indicates a preference for exploring table 1, 
and a negative value a preference for table 2. The three variables are normalized to facilitate visual comparison. 



 

Uncertainty is the Best Predictor of Exploratory Choice 
To evaluate the three exploration strategies, we tested whether participants’ exploration-phase 

choices could be predicted from the difference between the two tables that were presented as choice 
options in each of the hypothesized quantities. We fit the data with a multilevel logistic regression model 
for each strategy (Tables S4-6). In a formal comparison of the three models we found that uncertainty was 
the best predictor of exploratory choices, as indicated by a reliably better prediction metric (Fig. 3c). 

Accordingly, as shown in Figure 3d, the uncertainty for the table presented on the right relative 
to the table presented on the left (Δ uncertainty) predicted participants’ choices. Δ EIG provides a poorer 
fit to choices, and Δ exposure was anti-correlated with choice, in contradiction of the exposure 
hypothesis. 

 
Figure 3. Uncertainty is the best predictor of choice. The Bayesian observer model is validated by participants’ 
accuracy and confidence on the test phase. a, Participants were accurate when an exploration phase ended with low 
uncertainty, and performed at chance level when the phase ended with high uncertainty. b, Participant’s confidence 
on correct choices fell with rising uncertainty. Confidence on errors did not depend as much on Bayesian observer 
uncertainty. c, Uncertainty is the best predictor of exploration-phase choices. Out of the three hypothesized 
strategies it has the highest approximate expected log predictive density. d, This result can be assessed qualitatively 
by plotting the difference in each hypothesized quantity between the two tables presented on each trial against actual 
choices of the table presented on the right. For each plot, the relevant hypothesis predicts a positive smooth curve. 
Δ uncertainty, plotted in the centre, matches this prediction better than Δ EIG (left). The relationship between 
Δ exposure (right) and choice is negative, rather than the hypothesized positive correlation. Data presented as mean 
values ±1 SE. 

Participants Approach or Avoid Uncertainty According to Overall Uncertainty 
Having identified uncertainty as the strategy that best accounts for participants’ choices, we asked 

whether that strategy is modulated by the difficulty of making an exploratory choice. Our main index of 
difficulty was participants’ overall uncertainty about the two options they could choose to explore on a 



 

given trial (Fig. 4a). Since table choice options were presented at random, participants sometimes had to 
choose between tables they already knew a lot about, and sometimes between tables they were very 
uncertain about. When overall uncertainty was high, the choice between tables had to be made with very 
little evidence, and so was more difficult2.  

We found a systematic deviation in exploration strategy in relation to choice difficulty, as 
indexed by overall uncertainty. When overall uncertainty for the two choice options was below a certain 
threshold, participants chose the more uncertain table, as expected. However, when overall uncertainty 
was above the threshold, they chose the less uncertain table, thereby slowing the rate of information-
intake (Fig. 4b,c).  

 
Figure 4. Participants approach vs. avoid Δ uncertainty as a function of overall uncertainty. a, While the 
Δ uncertainty is the decision variable identified above, overall uncertainty, defined as the sum of uncertainty for 
both tables, is a measure of decision difficulty. b, The influence of Δ uncertainty on choice differed markedly below 
and above a threshold of overall uncertainty. Below a certain estimated threshold of overall uncertainty, 
Δ uncertainty had a significant positive effect on choice. Above this threshold of overall uncertainty, the influence of 
Δ uncertainty decreased significantly. Points denote mean posterior estimate from regression models fitted to binned 
data, error bars mark 50% PI. The solid line depicts the prediction from a breakpoint regression model capturing the 
non-linear relationship and estimating the threshold, with darker ribbon marking 50% PI and light ribbon marking 
95% PI. Data from three regions of overall uncertainty marked in colour are plotted in c. For low overall uncertainty 
(blue) participants tend to choose the table they are more uncertain about, as normatively prescribed. But that 
relationship is broken for medium levels of overall uncertainty (purple). For high overall uncertainty (red), 
participants strongly prefer to choose the table they are less uncertain about, thereby slowing down the rate of 
information intake. Data plotted as mean ±SE. 



 

We validated this observation using a multilevel piecewise-regression model, allowing for the 
influence of Δ uncertainty on choice to differ below and above a fitted threshold of overall uncertainty. 
We observed a positive relationship between Δ uncertainty and choice below the threshold b=0.97, 95% 
PI=[0.84, 1.11], but above the threshold we found that the influence of Δ uncertainty on choice became 
strongly negative, interaction b=-4.3e+02, 95% PI=[-5.3e+02, -3.5e+02]. The value of the threshold was 
estimated to be 1.28 nats of overall uncertainty (95% PI=[1.27, 1.29]; Table S7). This bias in exploration 
cannot be viewed merely as a noisier version of optimal performance. Rather, it constitutes a systematic 
modulation of exploration strategy on difficult trials. 

Approaching but not Avoiding Uncertainty is Associated with Test Performance 
So far, we identified two aspects describing participants’ exploration strategy – a baseline 

tendency to approach uncertainty and a tendency to avoid uncertainty when overall uncertainty is high. 
Since efficient learning is the purpose of exploration, we asked how each of these tendencies affected 
learning as reflected in performance at test. If the most important determinant of successful exploration is 
the ability to maximise information intake, then participants who tend to approach uncertainty to a greater 
degree should learn more and perform better at test, while participants with a strong tendency to avoid 
uncertainty should learn less and perform worse at test. 

To test these predictions we examined individual differences in exploration strategy. We 
correlated each participant's test performance with the parameters from the piecewise regression model  
describing their tendencies to approach and avoid uncertainty. We found that participants’ baseline 
tendency to approach uncertainty indeed predicted better performance at test b=2.98, 95% PI=[2.70, 3.26] 
(Fig. 5b; Table S8).  

In contrast, we found no evidence that participants with a strong tendency to avoid uncertainty 
performed worse at test. First, participants who started avoiding Δ uncertainty at a lower overall 
uncertainty threshold actually had a weak tendency to do better at test b=-0.05, 95% PI=[-0.10, -0.01]. 
Secondly, the magnitude of uncertainty avoidance under high overall uncertainty was not associated with 
test performance b=0.05, 95% PI=[-0.05, 0.14] (Fig. 5, Tables S9-10).  Thus, modulating exploration 
according to overall uncertainty was not maladaptive, resulting in no decrement to learning. This result 
suggests that the rate of information intake is not the limiting factor for the efficiency of exploration and 
learning. 



 

 
Figure 5. Individual differences in exploration strategy are correlated with test performance. a, We observe 
substantial individual differences in strategy. Replotting Fig. 4e for each individual reveals differences in the 
baseline influence of Δ uncertainty on choice, and the interaction with overall uncertainty. b, Associations between 
test performance and the parameters describing approaching and avoiding uncertainty. The baseline tendency to 
approach uncertainty (left) is strongly associated with performance at test, such that participants who are unable to 
approach uncertainty also perform poorly at test. The two parameters describing uncertainty avoidance at high 
overall uncertainty - the slope of the interaction (middle) and position of the breakpoint (right) are not strongly 
correlated with test performance, indicating that uncertainty avoidance does not hinder learning. 

Individual Differences in Exploration Reaction Times Associated with Test Performance  
Examining reaction times (RTs) further illuminated the link between exploration strategy and 

successful learning (Fig. 6). We focused on RTs measured on exploration-phase trials with overall 
uncertainty below the estimated threshold, since we found choice strategy on these trials to be tightly 
linked to successful test performance. We expected RTs to depend on the absolute value of Δ uncertainty, 
since this value captures the amount of available evidence upon which participants could base their 
choice. Specifically, when the absolute value of Δ uncertainty is large, the decision should be easy and 
RTs should be short, while when the absolute value is small, the decision should be difficult and RTs 
long. To test for this possible relationship between Δ uncertainty and RTs, we fit the data with a 
generative model of choice and RTs. We used a sequential sampling model, which explains decisions as 
the outcome of a process of sequential sampling that stops when the accumulation of evidence satisfies a 
bound. This model explains RTs as jointly influenced by participant’s efficacy in deliberating about 
Δ uncertainty, and their tendency to deliberate longer vs. make quick responses33–35. The basic predictions 
of sequential sampling models are that greater deliberation efficacy should be manifested as a greater 
dependence of RT on the strength of the evidence (here, absolute Δ uncertainty), and that a stronger 
tendency to deliberate manifests in longer RTs when the evidence is weak36. 

 We found that RTs indeed varied in relation to the absolute value of Δ uncertainty as expected 
b=0.67, 95% PI=[0.57, 0.77] (Table S11). Crucially, a strong dependence of RT on the absolute value of 



 

Δ uncertainty predicted better performance at test b=0.83, 95% PI=[0.58, 1.09]. We further found that 
participants who tended to deliberate longer for the sake of accuracy also tended to perform better at test 
b=1.42, 95% PI=[0.55, 2.31] (Fig. 6c, Table S12). In summary, participants who were better at 
deliberating about uncertainty during exploration, and who deliberated for longer, performed better at test. 

 
Figure 6. Individual differences in choice reaction times explained by a sequential sampling model. 
Participants varied not only in the pattern of their choices, but also in their RTs. a, Data from three example 
participants. The relationship of choice and RTs with Δ uncertainty weakens from left to right. Data plotted as mean 
±SE. b, These individual differences were captured by a sequential sampling model, explaining choices and RTs as 
the interaction between participant’s efficacy of deliberating about Δ uncertainty and their tendency to deliberate 
longer vs. make quick responses. Plotting model predictions, we observe a u-shaped dependence of RTs on 
Δ uncertainty for participants whose performance at test was in the top accuracy tertile. This characteristic u-shape is 
commensurate with Δ uncertainty being the decision variable used to guide exploration. This relationship is weaker 
for participants in the bottom two test accuracy tertiles. Such participants also exhibit shorter RTs overall. Lines 
mark mean predictions from a sequential sampling model fit by tertiles for visualization, ribbons denote 50% PIs. c, 
Correlating the sequential sampling model parameters with test performance confirms these observations. 
Participants with a stronger dependence of RT on Δ uncertainty perform better at test, as do participants who 
deliberate longer for the sake of accuracy. Example participants from a are marked in red. Lines are mean 
predictions from a logistic regression model. 

Participants Display a General Tendency to Repeat Their Previous Choice 
The observed change in strategy in association with overall uncertainty can also be described as a 

tendency to revisit the better-learnt tables when overall uncertainty is high. We also identified an 



 

independent pattern of revisiting previous choices that held across all levels of Δ uncertainty or overall 
uncertainty. We found that participants generally preferred to re-choose the table they had last chosen 
b=0.50, 95% PI=[0.42,0.59] (Fig. 7b, Table S13). This tendency to repeat choices was also reflected in 
RTs, which for repeat choices were less related to Δ uncertainty (b=-0.34, 95% PI=[-0.44,-0.24]). We also 
found that participants tended to make repeat choices more quickly rather than deliberate longer (b=-0.05, 
95% PI=[-0.06,-0.04]; Fig. 7c, Table S14). Hence, repeating a choice seems to be an additional heuristic 
participants employed to avoid the deliberation involved in choosing according to Δ uncertainty. 

 
Figure 7. Participants tend to repeat previous choices instead of deliberating over uncertainty. a, On a given 
trial one table has been chosen more recently than the other (frames denote previous choices). In the example the 
green table had been chosen more recently, hence it is designated the repeat option and the other table the switch 
option. b, Participants tend to choose the table displayed on the right more often when it is the repeat option than 
when it is the switch option. Data plotted as mean ±SE. c, When choosing a repeat option, participants’ RTs are 
shorter and less dependent on Δ uncertainty. Lines mark mean predictions from a sequential sampling model, 
ribbons denote 50% PIs. d, Participants who tended to repeat their previous choice also tended to perform better at 
test (left), were more likely to have a stronger baseline tendency to approach uncertainty (middle), and were more 
likely to start avoiding uncertainty at a lower overall uncertainty threshold (right). Regression lines are plotted for 
visualization. 



 

As in other aspects of exploration strategy, we observed considerable individual differences in the 
tendency to repeat previous choices. These differences were associated with the uncertainty-based aspects 
of exploration discussed above (Fig. 7d). Participants with a general tendency to repeat choices show 
stronger uncertainty avoidance when overall uncertainty is high, indicating that these two conceptually 
related strategies also co-occur in the population r=-0.61, 95% PI=[-0.75,-0.44] (Table S13). Furthermore, 
the tendency to repeat previous choices is associated with better test performance, logistic regression 
b=0.09, 95% PI=[0.07,0.12] (Table S15). The tendency to repeat is also correlated with a stronger 
baseline tendency to approach uncertainty r=0.32, 95% PI=[0.17,0.46] (Table S13), which was shown 
above to be correlated with test performance. Thus, while from a normative point of view repeating the 
previous choice appears to be a context-insensitive strategy, in practice participants who use this strategy 
do not learn any worse. 

Forgetting as a Conceptual Control 
 We have found that participants deviate from the optimal exploration policy, reducing the rate of 
information intake to strategically conserve cognitive resources. However, explaining a deviation from 
optimality as strategic is interesting only to the extent that the null hypothesis – that participants are 
simply failing at making good decisions – is also a-priori plausible. We turned to forgetting as a second 
source of difficulty in our task to make sure that this interpretation of behaviour as strategic was not a 
forgone conclusion. Since only two out of the four tables are randomly presented on each trial as choice 
options, there was variability in the number of trials since either of the presented tables was last explored 
– a number we refer to as memory lag. We assumed that choosing between tables that had not been 
explored for a long time is more difficult than between tables for which evidence has been recently 
observed. Indeed, we found that RTs were longer with large memory lag, indicating greater difficulty of 
making a choice (lognormal regression b=0.02, 95% PI=[0.02, 0.03]; Fig. 8a, Table S16). Furthermore, 
we observed that exploration choices on trials with a greater lag depended less on Δ uncertainty b=-0.08, 
95% PI=[-0.11, -0.05], and that the tendency to repeat the last chosen table on these trials was also 
diminished b=-0.13, 95% PI=[-0.15, -0.11] (Fig. 8b, Table S17). Finally, on trials with a large lag the 
difference in RTs between making a repeat and a switch choice disappeared, interaction b=0.02, 95% 
PI=[0.02,0.03] (Fig. 8a, Table S16). These patterns suggest that prior evidence is forgotten with 
increasing memory lag and that as a consequence exploration becomes more random. Hence, in contrast 
to the systematic effect of overall uncertainty, forgetting results in a failure to make principled 
exploratory choices. 



 

 
Figure 8. Forgetting is associated with random choice rather than a systematic bias. a, Memory lag, defined as 
trials since last choice, serves as a proxy for forgetting and contributes to the difficulty of making an exploratory 
choice. RTs rise with memory lag. The repeat choice RT advantage disappears with rising memory lag. Data plotted 
as mean ±SE. b, With higher memory lag choices become less dependent on Δ uncertainty, as indicated by flatter 
curves. The tendency to repeat the last choice is also diminished with memory lag. Both effects amount to choice 
becoming more random due to forgetting. Data plotted as mean ±SE. 

Discussion 

We examined the cognitive computations behind exploratory choices in a setting allowing for 
incremental learning in the service of a distant goal. We found that uncertainty played an important role in 
guiding participants’ choices about how to sample their environment for learning. In general, participants 
chose to learn more about the options they were more uncertain about. However, when overall uncertainty 
was especially high, participants instead avoided the more uncertain options and sampled the options they 
already knew more about. In addition, we found that participants tended to repeat previous choices. 
Together, this pattern suggests that participants systematically balance approaching and avoiding 
uncertainty while exploring.  

We further examined this pattern by assessing individual differences in exploration and test 
performance. We found that strategically avoiding uncertainty is not associated with a detriment to 
learning, even though it slows down the rate of information intake. Reaction time modelling revealed a 
tradeoff between deliberation effort and learning efficiency. Participants who deliberated longer learned 
better, but deliberation time could be shortened by repeating previous choices. Based on these results, we 
conclude that balancing approaching and avoiding uncertainty is a way to manage cognitive resources by 



 

regulating deliberation costs. In this sense, our results serve as an example of how human cognition is 
adapted to the inherent constraints of the human mind, as predicted by the resource rationality 
framework22. 

This work extends the treatment of exploration in two established literatures. Researchers of 
reinforcement learning have previously examined how exploration manifests when agents learn 
incrementally about their environment. Crucially, this literature has focused on cases where reward can be 
gained on each trial1,2,13,31,32,37–39. In contrast, our task was designed to remove the impetus to exploit 
current knowledge immediately, a motivation that predominates exploration in tasks with immediate 
reward. Accordingly, we were able to observe many exploratory choices and had greater experimental 
power to describe in detail how participants approach uncertainty and when they avoid it instead. 
Exploration has also been studied in the information search literature28,40–44. In most studies of this field 
participants make decisions without relying on their memory - as the entire history of learning is 
displayed to them on screen (cf. related work in active sensing45). This differs from our task, which places 
heavy demands on memory. Rather than treating capacity limitations as sources of noise and a nuisance to 
measurement, we find that the rational use of limited resources is a central computational goal of 
exploration. 

We observed considerable individual differences in exploration strategy, as would be expected in 
a complex task requiring memory-based learning and inference over a hierarchical environment. In the 
face of such variability, one may question the prudence of drawing conclusions about the population, 
since the average might be a poor summary of a plurality of idiosyncratic strategies. However, the strong 
correlation we observed between individual differences in exploration and test performance mitigates this 
concern. The correlation suggests that participants who were engaged with this task and able to learn from 
observation can well be described as exploring by balancing approaching and avoiding uncertainty. The 
relationship between test performance and RTs lends additional mechanistic support to this idea. Our 
results underline the importance of acknowledging and interpreting individual differences in cognition as 
strong tests of behavioural patterns and cognitive mechanisms. 

Our theoretical analysis and experiments leave several open questions. First, overall uncertainty 
in our task was correlated with the number of cards observed. While our results hold when trial number is 
added as a covariate to the regression models (see Table S18), future work orthogonalizing overall 
uncertainty and time on task would help to fully disentangle the contribution of each factor to uncertainty 
avoidance. 

Another open question is the source of difficulty engendered by overall uncertainty. Decisions 
based on high overall uncertainty may be more difficult due to limitations in committing prior 
experiences to memory, in inferring latent parameters from disparate experiences, in retrieving prior 
knowledge, or in estimating the uncertainty of existent knowledge. While the idea that decisions based on 
high overall uncertainty are more difficult has been previously motivated on computational grounds2,46, an 
explanation grounded in cognitive mechanisms is still needed. Accordingly, the mechanism by which 
uncertainty avoidance ameliorates choice difficulty remains unknown.  

One intriguing explanation for the source of difficulty and the way it is managed lies in the 
distinction between learning strategies dependent on remembering single experiences and those 
dependent on slower incremental learning of summary statistics47–52. Both strategies could contribute to 
performance in tasks such as ours. A participant may be encoding prior observations as single instances, 
or summarize them into a central tendency with a margin of uncertainty around it. Crucially, each strategy 
is associated with a different profile of cognitive resource use. Keeping track of individual experiences is 



 

much costlier than tracking a single expectation and a confidence interval around it52,53 and more likely to 
incur costs when switching between exploring different tables. Prior work suggests individuals switch 
between using single experiences and summary statistics according to the reliability of each strategy, and 
the cost  of using it52,53. In our case, summary statistics may be perceived as unreliable when overall 
uncertainty is high, compelling participants to rely on committing individual experiences to working 
memory47,50,52,54,55. Furthermore, recent work examining how humans make a series of related decisions 
demonstrates that the tension between remembering single experiences and discarding them in favour of 
summary statistics is accompanied by a tendency to revisit previous choices instead of switching to new 
alternatives56. 

The idea of a balance between approaching and avoiding uncertainty has conceptual parallels in 
other literatures. A group of relevant findings concern how animals explore their proximal environment. 
A classic finding in rats is that when placed in a novel open arena, they alternate between the exploration 
strategy of walking around the arena (uncertainty approaching) and a strategy of returning to their initial 
position and pausing there (termed “home base” behaviour, which is uncertainty avoiding)14. Relatedly, 
by using computational models to understand how rats use their whiskers to explore near objects, 
researchers have identified an alternation between uncertainty approaching and avoiding strategies15. 
Recent work in mice and primates has successfully uncovered neural circuits driving exploration by 
framing the problem of exploration as striking a balance between exploration and avoidance16,17,57. Our 
findings highlight the shared computational principles between human exploration in symbolic space and 
animal exploration of the physical environment and suggest that mechanisms involved in avoidance 
responses may also play a part in epistemic knowledge building. 

The questions we addressed here were partly motivated by the well-established observation that 
humans and animals often avoid uncertainty in various situations. Two broad categories of explanation 
for such avoidance have been proposed20. First, individuals avoid resolving uncertainty when it could lead 
to negative news, for example by avoiding ambiguous prospects when making economic choices58,59. An 
extension of this idea is dread avoidance19,20. One might avoid resolving the uncertainty about a medical 
diagnosis to avoid the unpleasant affective response to the news, even if the information could be very 
useful in determining treatment. A second reason to avoid uncertainty is the strategic management of 
conflict between different motivations, or different mechanisms of action selection20,21. For example, to 
maintain their diet, an individual might choose to avoid resolving the uncertainty about what snacks can 
be found in the office kitchen. Our findings highlight another kind of strategic uncertainty avoidance. In 
our tasks there were no negative consequences to learning about the colour proportions of card decks, and 
no conflicting motivations. Rather, we explain participants’ tendency to avoid uncertainty in terms of 
managing their limited memory and learning resources. 

Finally, human planning60, learning28, and sensing15,45 are increasingly studied as active 
processes, situated within and interacting with our environment. Understanding the complicated dynamics 
between agent and environment has been greatly facilitated by comparing behaviour against the 
computational ideal of maximising the amount of information observed2,10,40. The findings we present 
here suggest a modification to this computational premise. Rather than trying to uncover as much 
information as possible, the goal of human exploration is to maximize the amount of information retained 
in memory, by modulating the rate and order of observed information. 



 

Methods 

Data Collection and Participants 
A sample of 298 participants was recruited via Amazon MTurk to participate in four sessions of 

the exploration task. They were paid $3.60 for each session and earned a bonus contingent on their test 
phase performance, adding up to $4.50 for the first session and $6 for later sessions. Additionally, a $2 
bonus was paid out for completion of the fourth session. Participants were asked to complete the four 
sessions over the course of a week and were invited by email to each session after the first, as long as the 
data from their last session was not excluded according to the criteria we had specified (see below).  

The first session was terminated early for 89 participants due to recorded interactions with other 
applications during the experiment or failure to comply with instructions (see Supplementary 
Information). An additional 32 sessions played by participants who had successfully completed the first 
session were excluded for the same reasons. One participant was excluded after reporting technical 
problems with stimulus presentation in the second session. Twenty-seven further sessions were excluded 
for failure to sample cards from both decks, a prerequisite for learning on which participants were 
instructed as part of the training. Altogether, data from 194 participants was included in the analysed 
sample (120 female, 72 male, 2 other gender, average age 29.63, range 20-48). This sample included 194 
first sessions, 156 second sessions, 129 third sessions, and 116 fourth sessions. 

Before running this experiment, we pre-registered a sample size of 190 participants satisfying our 
exclusion criteria. We chose this number to be three times larger than a preliminary sample of N=62 
participants, which provided the dataset we used to develop our analysis approach and pipeline, and first 
identify exploration strategies as described above. Results for the preliminary sample are provided in 
Supplementary Information. 

Task Design and Procedure 
On each round of the exploration task participants were presented with a simple environment of 

four tables with two decks of cards on each table. Tables were distinguished by unique colourful patterns 
and decks by geometric symbols that did not repeat within an experimental session. The hidden side of 
each card was painted in one of two colours, with a unique colour pair for each round. The proportion of 
colours in each deck were determined pseudo-randomly (see Supplementary Information), resulting in 
variability in the difference in proportion between each deck pair - the learning desideratum of this task. 

At the beginning of each round, participants were first presented with the colour pair for the 
round, and then with the table-deck assignments. Participants then had to pass a multiple-choice test on 
the table-deck assignment, making sure they remembered the structure of the task before proceeding to 
explore. Failing to get a perfect score on this test resulted in repeating this phase. 

The exploration phase then commenced. Trial structure for the exploration phase is depicted in 
Fig. 1b. The lengths of the exploration phases varied from round to round. They were sampled from a 
geometric distribution with rate 1/44, shifted by 10 trials. The same list of round lengths was used for all 
participants, but their order was randomised. 

Following the exploration phase, participants were tested on their learning. They were presented 
with the rewarding colour for this round, and then had to indicate which deck had a greater proportion of 
that colour on each table (Fig. 1c). After answering this question for each of the four tables, they rated 
their confidence in each of the four choices on a 1-5 Likert scale. Participants were then told whether each 
of the test choices were correct, and the true colour proportions for the two decks on each table were 
presented to them as 10 open cards. 



 

The first session started with extensive instructions explaining the structure of each of the two 
phases of the task and clearly stating the learning goal. Participants were also instructed on the 
independence of colour proportion within each deck pair, necessitating sampling from both decks to 
succeed in the task. The instructions also included training on how to make the relevant choices in each of 
the two stages. A quiz followed the instruction phase, and participants had to repeat reading the 
instructions if they had given the wrong response to any question on this quiz. 

Each session started with a short practice round (12-19 trials). Data from this round was excluded 
from analysis. In the first session participants then played three more rounds and in later sessions five 
more rounds, for a total of 18 experimental rounds.  

Data Analysis 

Bayesian Observer 
Each of the three hypothesized strategies for exploration postulates a different summary statistic 

of prior learning as the driver of exploratory choice. To derive these summary statistics, we first had to 
construct a model of prior learning. We chose a simple Bayesian observer model45,61. Like our 
participants, this model’s goal was to learn θ=sgn(π1-π2) from observed outcomes x0:t. It did so by placing 
a probabilistic prior over the value of each πi, updating it after every observation according to Bayes’ rule, 
and solving for θ using the rules of probability. The result is a posterior distribution capturing the agent’s 
expectation of the value of θ, and their uncertainty about the expectation. This process is depicted in Fig. 
2 for two tables and their matching pairs of decks. 

This computation can be put into formulaic form as follows. At the beginning of a round, the 
Bayesian observer places a flat Beta distribution prior on the proportion of colours in each of the eight 
decks:  

𝜋! 	~	𝐵𝑒𝑡𝑎(1,1) 
 After observing a card, this prior would be updated to form a posterior distribution. Since the 
posterior of a Beta prior and a Bernoulli observation likelihood is also a Beta distribution, the posterior 
has a simple analytic form: after completing t trials, observing ci cards of one colour and t - ci cards of the 
other colour, the posterior would be: 
 𝜋!|𝑥":$	~	𝐵𝑒𝑡𝑎(1 + 𝑐! , 1 + 𝑡	 − 𝑐!) 

We can then find the probability that θ=1, i.e. that π1>π2, by calculative the probability that π2 is 
smaller than a given π1=z, and integrating over z, the possible values of π1: 

𝑃(𝜃 = 1|𝑥":$) 	= 	 ∫
%
" 𝑓&!|(":$(𝑧)𝐹&%|(":$(𝑧)dz 

Where 𝑓 is the Beta probability density function, F is the Beta cumulative density function, and 
𝑥":$ are observations thus far. We computed the value of this integral numerically using the Julia package 
QuadGK.jl. Finally, 𝜃 can only take two values, and so 

	𝑃(𝜃 = −1|𝑥":$) 	= 	1 − 𝑃(𝜃 = 1|𝑥":$) 

Computing Hypothesized Decision Variables 
The theory of decision making defines a decision variable as the quantity evaluated by the 

decision maker in order to choose between two choice options33. The difficulty of the decision should 
scale with the absolute value of the decision variable. Each of the three hypothesized strategies is defined 
by a specific summary statistic of prior learning that might serve as the decision variable for an 
exploratory choice. The three summary statistics are given in figure 1e. 



 

Both EIG and uncertainty are derived from the uncertainty of the posterior for 𝜃 as defined above. 
We quantified uncertainty as the entropy of the posterior belief4,29,40: 

𝐻(𝜃|𝑥":$) = − 9
)*+%,%

𝑃(𝜃|𝑥":$)𝑙𝑛𝑃(𝜃|𝑥":$)	 

Entropy takes the unit of nats, ranging from 0 should the participant be absolutely sure about the 
value of 𝜃 for both table choice options, to 0.69 when they know nothing about a table. This is the 
equivalent of 1 bit of information, were we to replace the natural logarithm with a base 2 logarithm.  

Sequential Sampling Model of Reaction Times 
To draw inference from participants’ RTs we turned to the sequential sampling theory of 

deliberation and choice. This theory encompasses a family of models in which decisions arise through a 
process of sequential sampling that stops when the accumulation of evidence satisfies a threshold or 
bound33,36. From this family of models we chose to use the drift diffusion model (DDM) to fit our data, as 
it is very well described and extensively studied33,35. The DDM explains RTs as the culmination of three 
interpretable terms. The first is the efficacy of a participant’s thought process in furnishing relevant 
evidence for the decision - in our case the efficacy of calculating Δ uncertainty (the drift rate in DDM 
parlance). The second term governs the participant’s speed-accuracy tradeoff by determining how much 
evidence they require to commit to a decision. This can also be thought of as how long a participant is 
willing to deliberate when a decision is difficult (bound height). Finally, the portion of the RT not linked 
to the deliberation process is captured by a third term (non-decision time). Since behaviour was 
considerably different when overall uncertainty was high, DDM models were fit excluding trials with 
total uncertainty above the participant’s estimated threshold. See Supplementary Information for a full 
specification of the model. 

Estimating Multilevel Bayesian Models for Inference 
The regression coefficients and PIs reported here were all estimated using multilevel regression 

models accounting for individual differences in behaviour. We used regularising priors to facilitate robust 
estimation (Table S1). For predicting choices, we used logistic regression, for confidence ratings we used 
ordinal-logistic regression, and for average RTs we used lognormal regression. We estimated these 
models with Hamiltonian Monte Carlo implemented in the Stan probabilistic programming language 
using the R package brms. Three Monte-Carlo chains were run for each model, collecting 1000 samples 
each after a warm up period of at least 1000 samples (warm up was extended if convergence had not been 
reached). Sequential sampling models were estimated using slice sampling, implemented in the python 
package HDDM. Four Monte-Carlo chains were run for each model, collecting 2000 samples each after a 
warm up period of at least 2000 samples. Convergence for both model types was assessed using the 𝑅= 
metric, and visual inspection of trace plots. R syntax formulae and coefficients for covariates for all 
models mentioned in the main text are reported in Supplementary Information. 

Model Evaluation 
We compared the models of choice and RTs to alternative models, either reduced or expanded 

(see Supplementary Information). We used the LOO R package to perform approximate leave-one-out 
cross validation for models implemented in Stan. This method uses pareto-smoothed importance sampling 
to approximate cross validation in an efficient manner62. Models implemented in HDDM were compared 



 

using the DIC metric. We also performed posterior predictive checks for our models, making sure they 
capture the theoretically important qualitative features of the data. 

Data Availability 

The entire dataset discussed here has been deposited on the OSF database https://osf.io/6zyev/. 
Source data for figures are provided in this paper. 

Code Availability 

The code used to run the experiment as well as the scripts and the software environment we used 
for analysis have been deposited on the OSF database https://osf.io/6zyev/. 
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