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Abstract

■ With multiple learning and memory systems at its disposal,
the human brain can represent the past in many ways, from
extracting regularities across similar experiences (incremental
learning) to storing rich, idiosyncratic details of individual
events (episodic memory). The unique information carried
by these neurologically distinct forms of memory can bias
our behavior in different directions, raising crucial questions
about how these memory systems interact to guide choice
and the factors that cause one to dominate. Here, we devised
a new approach to estimate how decisions are independently
influenced by episodic memories and incremental learning.
Furthermore, we identified a biologically motivated factor that

biases the use of different memory types—the detection of
novelty versus familiarity. Consistent with computational
models of cholinergic memory modulation, we find that
choices are more influenced by episodic memories following
the recognition of an unrelated familiar image but more in-
fluenced by incrementally learned values after the detection
of a novel image. Together this work provides a new behav-
ioral tool enabling the disambiguation of key memory behav-
iors thought to be supported by distinct neural systems while
also identifying a theoretically important and broadly ap-
plicable manipulation to bias the arbitration between these
two sources of memories. ■

INTRODUCTION

Decades of research have demonstrated that experi-
ences are encoded within neurally distinct learning
and memory systems (Poldrack et al., 2001; Squire &
Zola, 1996; Knowlton, Squire, & Gluck, 1994; McDonald
& White, 1993), each of which can bias future choices.
For example, after reading a compelling article, you could
later recall your experience reading a particular finding—
an episodic memory (Tulving, 1983)—as well as increase
your valuation of the journal itself and, consequently, the
likelihood of your searching for new articles within it—
incremental reward learning (Sutton & Barto, 1998). This
multiple memory system framework has proven powerful,
providing a structure for understanding learning and
memory disorders (Small, Schobel, Buxton, Witter, &
Barnes, 2011; Yassa, Mattfeld, Stark, & Stark, 2011; Frank,
Seeberger, & O’reilly, 2004; Knowlton et al., 1994) and
driving recent investigation into the distinct learning mech-
anisms that underlie each separate system. Understanding
the interactions between these forms of learning has
important implications for how memory guides later be-
havior. However, most research so far has focused on
studying each system in isolation, leaving open important
questions about how they interact, how they guide deci-
sions, and which factors bias their use.

Incremental learning of value is often studied by char-
acterizing how values are updated through experience
(Daw, 2011)—a form of reinforcement learning thought
to depend on dopamine release in the striatum (Schultz,
1998, 2016; Schonberg et al., 2010; Pessiglione, Seymour,
Flandin, Dolan, & Frith, 2006; Barto, 1995). Experiments
in this field tend to present the same choice options
across hundreds of trials. Each choice is reinforced with
a reward or loss. The difference between the obtained
outcome and the choice’s expected value (reward predic-
tion error) is thought to be signaled by dopamine release
(Schultz, 1998; Sutton & Barto, 1998), so that unexpected
outcomes incrementally nudge the values attributed to
each option toward the experienced outcome. In this
way, incremental learning extracts the decontextualized
value of each choice option by averaging across experi-
ences and discarding the individual episodes.

A separate line of research has focused on episodic
memory and its dependence on hippocampal processes
(Tulving & Markowitsch, 1998; Cohen & Eichenbaum,
1993; Squire, 1992). This research tends to assess the in-
fluence of past experiences on behavior by asking par-
ticipants to directly reflect on them. Experiments often
begin with an encoding phase in which participants are
presented with a unique stimulus on each trial. This is
followed by a retrieval phase in which new stimuli are
intermixed with those from the encoding session (old
stimuli). Because old stimuli were only presented once
before, they unambiguously cue memory for a single
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episode, which participants are asked to recall. Damage
to the hippocampus robustly impairs both the encoding
of these episodic memories and their retrieval (Gilboa
et al., 2006; Clark, Broadbent, Zola, & Squire, 2002; Nadel
& Moscovitch, 1997; Scoville & Milner, 1957). Analogously,
hippocampal fMRI activity has been related to the success-
ful encoding (Ranganath et al., 2004; Davachi, Mitchell,
& Wagner, 2003) and retrieval (Eldridge, Knowlton,
Furmanski, Bookheimer, & Engel, 2000) of episodic
memory in healthy populations, providing converging
evidence for the hippocampus’ involvement in episodic
memory.

Unlike these experimental paradigms, in our everyday
experiences, we are constantly tasked with choosing
between options that could trigger the retrieval and use
of distinct episodic memories as well as incrementally
learned values. Which system will dominate in these less
prescriptive contexts? Not only is this quandary frequently
encountered, it also has important implications. For exam-
ple, breaking persistent maladaptive behaviors, such as
addiction, often requires overriding ingrained habitual
responses, presumed to depend on striatal incremental
learning (Volkow, Wang, Fowler, Tomasi, & Telang,
2011), with episodic memories of newly learned strategies,
presumed to depend on the hippocampus (Tulving &
Markowitsch, 1998). Thus, the challenge facing adaptive
memory is often not just selecting the right memories
but instead biasing behavior toward the most appropriate
memory system.

At a neural level, one factor that may arbitrate between
these systems is cholinergic regulation of hippocampal-
dependent memory. Neuromodulation plays a central
role in theories of incremental learning, with dopamine
regulating when new learning should occur (Barto,
1995). Cholinergic neuromodulation has also been
hypothesized to play a somewhat analogous role in hip-
pocampal memory; it has been argued to bias when the
hippocampus engages in the encoding versus the re-
trieval of episodic memories (Easton, Douchamps, Eacott,
& Lever, 2012; Meeter, Murre, & Talamini, 2004; Hasselmo,
Wyble, & Wallenstein, 1996). Specifically, neurocompu-
tational models (Meeter et al., 2004; Hasselmo et al.,
1996) and empirical findings (Vandecasteele et al., 2014;
Douchamps, Jeewajee, Blundell, Burgess, & Lever, 2013)
suggest that acetylcholine levels maintain prolonged hip-
pocampal “states,” which last for a few seconds at a time
(Pabst et al., 2016; Hasselmo & Fehlau, 2001). The value
of these states lies in their ability to accommodate the
competing computational demands of memory formation
and retrieval (O’Reilly & McClelland, 1994), optimally tim-
ing each memory process based on contextual factors.
Specifically, the recognition of familiar contexts decreases
cholinergic transmission to favor further episodic mem-
ory retrieval in the presence of potential memory cues.
Conversely, the detection of novel contexts increases
cholinergic transmission (Giovannini et al., 2001) to favor
episodic memory encoding in the presence of new and

unexpected information. We have previously explored
the consequences of this hypothesis for human behavior,
demonstrating that recent exposure to familiar images in-
creases the ability to later recall unrelated associations
(Patil & Duncan, 2018) and increases the likelihood that
people use episodic memory cues to make decisions
(Duncan & Shohamy, 2016). By contrast, recent exposure
to novel images increases the subsequent formation of
episodic memories, which can later be used to guide fu-
ture actions (Duncan & Shohamy, 2016).
Our earlier research, however, only assessed the im-

pact of familiarity- and novelty-evoked states on episodic
memories; memory cues were unambiguously associated
with single past events. Thus, the important question
remains—can novelty bias the type of memory used by
individuals when they have multiple memory sources at
their disposal? The cholinergic framework would predict
that episodic memories are more likely to dominate over
competing incrementally learned values to guide choice
in familiar context, because recognizing one familiar cue
primes episodic memory to take advantage of other
familiar episodic memory cues.
To test this prediction, we modified our episodic

decision-making paradigm (Duncan & Shohamy, 2016)
so that people are now free to make choices using both
individual episodic memories and incrementally learned
values. The few established paradigms that assess both
hippocampal- and striatal-mediated learning do so by pit-
ting the systems against each other, reinforcing either the
hippocampal- or striatal-dependent behavior at different
points (Packard, 2009). This approach, however, offers
limited insights into how people arbitrate between two
sources of memories when both are viable sources of
information. By contrast, here we combine elements of
incremental reward learning and episodic memory tasks
into a single paradigm in which both types of learning are
simultaneously reinforced. Specifically, participants
chose one of two cards dealt in a computerized card
game. Each card had two dimensions: (1) a distinctive
object, which was repeated at most once during the
experiment, and (2) a deck color, which was present
on every trial and probabilistically related to reward dis-
tributions. Thus, the participant could either use the dis-
tinctive objects to cue episodic memories of a specific
card’s values or they could use the colored decks by
incrementally updating and refining their values across
trials. Importantly, we controlled trial sequences and out-
comes to decorrelate the object and deck values, allow-
ing us to independently estimate the influence of each on
participants’ choices.
We used this paradigm to assess whether recent

novelty and familiarity can arbitrate between the use of
episodic memories and incrementally learned values.
First, we demonstrated that people are more likely to
select cards using episodic object memories following
the successful retrieval and use of other object memo-
ries. Conversely, the use of object memories negatively
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impacted the subsequent use of incrementally learned deck
values. These biases were robustly observed in both reward
(Experiment 1A) and loss experiments (Experiment 1B),
underscoring the power of the manipulation. Second, we
further challenged the underlying mechanisms driving the
bias using a contextual novelty manipulation; we displayed
an unrelated novel or familiar scene image before dealing
cards on each trial (Experiment 2). Despite the incidental
relationship between the scene images and the task,
familiar scenes increased the use of episodic memories of
object values at the cost of incrementally learned deck
values. This combination of results supports a neurally
inspired model of memory in which accessing the con-
tents of one system increases the subsequent accessibil-
ity of other unrelated memories stored within the same
system.

EXPERIMENT 1

In Experiments 1A and 1B we designed a new task to dis-
ambiguate the contributions of episodic and incremental
learning to behavior. On each of a series of trials, partic-
ipants chose between two cards for the chance to win a
monetary reward. Each card had two features: a distinc-
tive object and the color of the deck from which the card
was drawn. We designed these features to tap distinct
forms of memory. As in our previous work, each object
repeated at most once in the task so that using memory
for the objects required the rapid acquisition of an object
value association (Duncan & Shohamy, 2016). Here, we
added a second dimension to this choice problem—two
decks (red and blue) that were available on every trial
and were probabilistically associated with reward out-
comes. This noisy and nonstationary relationship between
decks and outcomes could be efficiently extracted by
incrementally updating the values of decks across trials,
forming a recency-weighted average of value across
experience. We first confirmed that participants could
employ both types of learning without experiencing
trade-offs or interactions between them in both reward
(Experiment 1A) and loss (Experiment 1B) experiments.
We then tested our prediction that, when people have
multiple types of memory at their disposal, recognizing
familiar cards would increase the use of episodic memory
on the next trial, potentially at the cost of incremental
value learning.

Methods

Participants

Sixty-one members of the Columbia University commu-
nity (30 women, mean age = 20.2 years) participated in
the study for pay ($12/hr + bonus earnings). Participants
were divided between Experiment 1A (31 participants)
and Experiment 1B (30 participants). All participants pro-
vided informed consent at the beginning of the study,

and all procedures were approved by the Columbia
Morningside Ethics Board.

Stimuli

Five hundred forty-three color images of different com-
monplace objects were used as stimuli. Additionally,
two decks of virtual playing cards (red and blue decks)
were generated. At any point in the experiment, one
deck drew outcomes from a lucky distribution (average
outcome = 63¢), whereas the other drew from an un-
lucky distribution (average outcome = 37¢; Table 1).
The left versus right position of the card was randomly
assigned for every trial.

Procedure

Participants performed a series of trials in which they
chose between cards for the chance to earn a monetary
reward (Figure 1A). On each trial, participants were pre-
sented with two cards and were given 1.5 sec to choose
one using the “j” and “k” keys on a standard keyboard.
They were then shown the outcome of their choice
(i.e., the selected card’s value) for 1.5 sec, followed by
a 1.5-sec fixation cross between trials. On every trial,
one of the cards was drawn from a red deck and one
from a blue deck. Each card additionally had an object
on it; the identity of the objects varied across trials.
Outcomes ranged between 0 cents and 1 dollar. As de-
tailed below, a key feature of the design is that both
the color of the deck (red or blue) and the specific object
were related to the outcome.

Following many prior studies of reinforcement learn-
ing, the relationship between the color of the deck
(red or blue) and the likelihood of reward was probabi-
listic and varied over the course of the experiment. In
particular, the likelihood of each colored deck being
the better choice (the “luckier” deck) reversed frequently
(every 20 ± 5 trials), such that participants had to contin-
uously use the outcomes to update deck values to inform
their future choices. Learning such probabilistic associa-
tions between decks and outcomes unfolds over time be-
cause no single outcome can be used to infer which deck
is “luckier” at a given phase of the experiment. Learning
this sort of task is well fit by reinforcement learning
models that assume that participants learn the average
value of each deck color across trials.

Here, in contrast to previous studies, we included a
second feature, which also predicted outcomes—the

Table 1. Distribution of Old Object Card Values by Deck
Luckiness

0¢ 20¢ 40¢ 60¢ 80¢ $1 Mean

Lucky deck 16% 18% 16% 18% 17% 15% 49¢

Unlucky deck 17% 16% 17% 16% 16% 16% 49¢
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distinctive object. On roughly half of the trials, both ob-
jects had never been seen before (“new”). On the other
trials, an object card that was selected on one earlier trial
was re-presented (“old”) alongside a new card. These old
objects were worth the same amount as they were the
first time they appeared. Therefore, participants could
use their memory for an old object’s value to predict
the outcome of selecting it.

Critically, the values of the decks versus the objects
were decorrelated to permit the independent estimation
of how much participants used each to make their
choices. This decorrelation was enabled by the reversals
in deck luckiness; objects from a particular deck could be
repeated at points when that deck had the same or re-
versed luckiness (Figure 1B). As can be seen in Table 1,
this approach succeeded in making object and deck
values independent—all old object card values were sim-
ilarly likely to occur when selected from a deck that was
currently lucky or unlucky. Additionally, by carefully con-
trolling card presentations, we also ensured that old ob-
ject cards and new object cards were similarly valuable on
average. We also used a reinforcement learning model
(see below) to derive personalized estimates of incre-
mentally learned deck values on a trial-by-trial basis. As

illustrated in Figure 1C, these model-derived deck values
were not significantly correlated with object values (mean
r = .09, SD = .09). Altogether, this design allowed us to
use participants’ choices to infer how much each choice
was driven by incremental value versus episodic memory
on a trial-by-trial basis.
In Experiment 1A, participants made choices in a re-

ward context and received 7% of their total winnings at
the end of the experiment. In Experiment 1B, partici-
pants made choices in a loss context; they received a
$20 endowment at the beginning of the experiment
and selected cards to minimize their losses (7% of total
outcomes). In both experiments, participants performed
348 trials divided equally into three blocks.

Reinforcement Learning Model

We modified a temporal difference reinforcement learn-
ing model (Sutton & Barto, 1998) to derive tailored esti-
mates of each participant’s learning of both deck and
object values based on their personal history of choices
and experienced outcomes. This model assumes that the
value, Q, of the chosen deck, dc, is updated on every trial,
t, based on the difference between the expected value of

Figure 1. Task schematic and structure for independent assessment of incremental versus episodic memory. (A) Example trials illustrating cards’
distinctive object and repeating deck features. We use “Value Encoding” to designate trials on which both cards have new objects (new–new).
Conversely, “Value Retrieval” refers to trials when one card has a previously selected object (new–old), permitting episodic retrieval of a specific
card’s value. Incremental updating of red and blue deck values can occur on every trial, as can the use of deck values. (B) Schematic illustrating the
logic employed in the decorrelation of object and deck values. The graph plots the running average of recent deck outcomes experienced by a
participant. The two trials illustrate how periodically reversing deck values can result in incongruent object and deck values. Specifically, if a
participant chose a new object card from the red deck during a phase when the red deck was lucky and received a good outcome, then the next time
the same card appeared it might be during a phase when the blue deck is luckier. (C) Incrementally learned deck Q values (estimated by a
reinforcement learning model) are plotted against episodically learned object values to visualize their independence. (D–E). The use of each value
type is not significantly correlated across participants in either the reward or loss experiments.
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the chosen deck and the obtained reward, r. This differ-
ence is termed the prediction error, δ

δt ¼ rt−Qt−1 dcð Þ

The degree to which this prediction error updates the
value of the chosen deck depends on the learning rate
parameter, α

Qt dcð Þ ¼ Qt−1 dcð Þ þ αδt

As α approaches 1, the value of the chosen deck will
approach the most recently received outcome. As α
approaches 0, the value of the chosen deck will be min-
imally updated. Intermediate values of α will result in
deck values that integrate across outcomes, reflecting an
incremental learning process. We fit α to participants’
behavior, restricting its range to be between 0 and 1.
The value of the unchosen deck, du, was not updated:

Qt duð Þ ¼ Qt−1 duð Þ

The deck values and the participant’s history with the ob-
ject on the card were used to compute the probability, P,
of selecting the card from the red deck using a softmax
(logistic) choice rule:

P dredð Þ ¼ 1
1þ exp − βd Qred−Qblueð Þ þ βoVo þ βrOð Þð Þ

Here, the inverse temperature parameter, βd, controls
how closely the difference in deck values tracks choices.
βo controls the influence of the old object card’s value,
Vo . Vo is positive when the old card is in the red deck,
negative when the old card is in the blue deck, and 0
when there is no old card. βr controls how much partic-
ipants prefer cards with old objects, O (0 = red deck card
is new; 1 = red deck card is old). Each β parameter was
fit to participants’ choice with a lower bound of 0.
We estimated the four free parameters (α, βd, βo, and

βr) for each participant by minimizing the sum of the
negative log likelihoods of choices given the estimated
probability, P, of each choice using constrained nonlinear
optimization (fmincon, MATLAB). We repeated the search
with all parameters set at five random starting points to
avoid local optima and selected the iteration, which re-
sulted in the lowest negative log likelihoods. To generate
Q-value regressors, we used the average α across par-
ticipants to generate trial-by-trial Q-value estimates based
on each participant’s personal trial sequence. This approach
reduces overfitting and the noisiness in individual partici-
pants’ estimates (Schönberg, Daw, Joel, & O’Doherty,
2007; Daw, O’Doherty, Dayan, Seymour, & Dolan, 2006).

Mixed Generalized Linear Models

We also used mixed generalized linear models with a lo-
gistic linking function to predict choices based on the

object values, deck values, and their interaction with re-
cent mnemonic processes. Specifically, we identified ob-
ject recognition trials as the trials on which choices were
optimally consistent with previously experienced object
values (choosing old cards worth >$0.5 and avoiding old
cards worth <$0.5). In separate models, we also classified
object recognition using experiment-tailored decision
thresholds that took biases toward selecting old over new
cards into account. In these models, trials were labeled as
recognized if participants selected old cards worth >$0.34
(Experiment 1A) and >$0.32 (Experiment 1B) or avoiding
old cards worth less than these thresholds. It should be
noted that this approach is quite similar to the optimal
threshold as only cards worth $0.40 were affected.
Recognized trials were coded with 1, whereas trials which
did not contain an old card or on which choices did not
reflect object memory were coded with 0. We then as-
sessed the degree to which expressing object memory
on the preceding trial modulated the use of object mem-
ory on the subsequent trial by predicting choice (old or
new card) with the value of the old card ($0–$1), the
preceding object memory, and the interaction between
these variables. Similarly, we assessed the impact of pre-
ceding object memory on the use of deck values by pre-
dicting the likelihood of selecting the same deck as on the
preceding trial (stay response) based on the outcome of
the preceding choice ($0–$1), the preceding object use,
and the interaction between these factors. All models were
estimated using the lme4 package (Bates & Maechler,
2009) in the R programming language and were estimated
by optimizing restricted maximum likelihood. Each fixed
effect term was also included as a random slope, grouped
by participant.

RESULTS AND DISCUSSION

We first assessed whether participants could indepen-
dently use both episodic object memories and incremen-
tally learned deck values to make choices. We used a
reinforcement learning model (Sutton & Barto, 1998)
to derive personalized trial-by-trial estimates of par-
ticipants’ deck values (Q values) based on their unique
sequence of choices and outcomes. Notably, model-
derived deck Q values reflect the outcome of incremental
value updating. By contrast, remembered object values
could be simply coded as the previously experienced out-
come, as participants only had one relevant past experi-
ence. We then quantified each participants’ use of both
types of learned values by estimating the increased log
odds of selecting an old card based on its object value and
the difference deck Q values. As shown in Figure 2, both
types of value memories were strong predictors of choice
in both the reward and loss experiments (Reward: object:
β = 0.77, z = 4.61, p < .0001; deck: β = 1.86, z = 4.69,
p < .0001, Figure 2A and B; Loss: object: β = 0.48, z =
3.16, p = .001; deck: β = 1.67, z = 7.06, p < .0001,
Figure 2C and D). Participants also had a slight preference
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for old over new cards in the reward context (β= 0.15, z=
2.49, p = .01) and a trend toward this same bias in the loss
context (β = 0.12, z = 1.86, p = .06). Together, this indi-
cates that participants were more likely to select decks
that had recently resulted in higher outcomes while
avoiding decks that had recently resulted in lower out-
comes. Additionally, participants were more likely to se-
lect old object cards that yielded higher outcomes when
previously selected while avoiding old object cards that
yielded lower outcomes.

Importantly, the use of these values was independent,
both across and within participants. Across participants,
we did not find a significant correlation between the
use of deck and object value (reward, r = .19, p = .31;
loss r = −.17, p = .33; Figure 1D and E). This suggests
that participants did not strategically rely on one memory
type throughout the experiment, but instead that they
had to arbitrate between two competing memory types
on a trial-by-trial basis. Within participants, deck and
object value memories did not significantly interact when
guiding choices (reward: β = 0.34, z = 0.92, p = .36;
loss: β = −0.22, z = −0.65, p = .51), suggesting that
participants could independently access and use both
types of values. Moreover, there was no systematic shift
in the type of memory used across the two experimental
runs (reward object: β = 0.05, z = 0.23, p = .82; reward
deck: β = 0.36, z = 1.22, p = .22; loss object: β = 0.13,
z = 0.58, p = .56; loss deck: β = 0.19, z = 0.52, p = .60)
or in the 10 trials following a reversal in deck “luckiness”

(reward object: β = 0.10, z = 0.34, p = .73; reward
deck: β = 0.14, z = 0.56, p = .57; loss object: β =
−0.10, z = −0.43, p = .67; loss deck: β = 0.19, z =
0.88, p = .38).
We additionally used the reinforcement learning

model to confirm that participants used incremental
learning to acquire deck values. We specifically assessed
the distribution of learning rates estimated across partic-
ipants. A learning rate of 0 reflects no updating of deck Q
values based on outcomes, whereas a learning rate of 1
reflects complete updating of deck Q values, which effec-
tively erases all memory of prior outcomes; learning rates
between 0 and 1 reflect incremental updating of values,
aggregating outcomes across trials. The lower the learn-
ing rate, the greater the impact of more distant ex-
periences. We found a mean learning rate of 0.54 and
an interquartile range of 0.29–0.89 in Experiment 1A
(reward) and a mean learning rate of 0.64 and an inter-
quartile range of 0.36–.97 in Experiment 1B (loss), with
no significant difference between the reward and loss
experiments, t(59) = −1.01, p = .32. These moderate
model-derived learning rates suggest that participants
incrementally aggregated information across trials to
guide their choices about the decks.
Given that both episodic object memories and incre-

mentally learned deck memories were found to indepen-
dently drive choices, we turned to our primary question:
Can the recent detection of novelty versus familiarity bias
the subsequent use of different memory systems in

Figure 2. Use of episodically
learned object values and
incrementally learned deck
values. (A) Use of object values
in the reward experiment
(Experiment 1A). Participants
are consistently more likely to
pick an old object card that
resulted in high outcomes in
the past and avoid those that
resulted in poor outcomes.
(B) Deck Q values (estimated
using a reinforcement learning
model) also influence choices
about old object cards (left
graph). Participants are more
likely to select the old card
when it is dealt from a deck
with a higher Q value and avoid
it when dealt from a lower Q-
value deck. Participants also
slowly increase their selection
of the currently lucky deck with
repeated experience (right
graph). A similar pattern of
object (C) and deck (D) use was
observed in the loss experiment
(Experiment 1B). Black lines
indicate the group fixed effect
and colored lines plot individual
participants.
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decision-making? We first asked whether participants’
use of episodic memories increased after their successful
retrieval and use of other episodic memories on the pre-
ceding trial, as would be predicted by our memory state
framework. In both reward and loss experiments, par-
ticipants were nearly three times more likely to use an
object memory if they had used one on the preceding
trial (reward: β = 0.94, z = 3.40, p = .0007; loss: β =
0.89, z = 3.40, p = .0006; Figure 3A and B). Similar
results were obtained when using experiment-tailored
decision thresholds to infer recognition on the prior trial
(reward: β = 0.97, z = 3.24, p = .001; loss: β = 0.71, z =
2.79, p = .005). Preceding episodic memory use also
increased participants’ preference for old over new
cards, regardless of their values (reward: β = 0.26, z =
2.73, p = .006; loss: β = 0.18, z = 2.39, p = .02,
Figure 3A and B); in fact, this bias toward familiar options
was not observed when the preceding trial was new or not
recognized (reward: β= 0.06, z= 0.85, p= .39; loss: β=
0.06, z = 0.83, p = .41). Our unique task allowed us also
to assess how this bias toward episodic memory use influ-
enced the use of incrementally learned values. We found
that participants were less likely to use prior deck out-
comes to guide choices (i.e., staying with a deck that re-
sulted in high outcomes) following the use of an episodic
memory as compared with following trials on which epi-
sodic memories were not used (reward: β = −0.46, z =
−2.37, p = .02; loss: β = −0.86, z = 4.32, p < .0001;
Figure 3C and D). Thus, using episodic object memories

orients participants toward using other object memories
on the subsequent trial, but at the cost of using deck
memories.

EXPERIMENT 2

Experiments 1A and 1B developed a new approach to dis-
ambiguating the contributions of episodic and incremen-
tally learned memories to behavior. They also identified a
crucial factor that biases the arbitration between these
two types of memory—the recent retrieval and use of
episodic memories. This bias could be driven by two
possible mechanisms: The first is the generation of an
episodic retrieval state, akin to those identified by our
prior research, which studied episodic memory in isola-
tion (Patil & Duncan, 2018; Duncan & Shohamy, 2016;
Duncan, Sadanand, & Davachi, 2012) and which is pre-
dicted by neurocomputational models of hippocampal
function (Meeter et al., 2004; Hasselmo et al., 1996).
Alternatively, this bias may be driven by fluctuations in
how participants attend to the cues; that is, orienting
to the object on one trial may be related to a tendency
to orient toward objects on the subsequent trial. These
accounts make different predictions about the breadth
of choices that should be influenced by recent episodic
retrieval. The attentional mechanism would only apply
when episodic memories are consistently cued in similar
ways across experiences—as was the case when episodic
memories were cued only by objects. By contrast, the

Figure 3. Choices depend on the use of episodic memories in the immediately preceding trial. The value of old objects influenced choice more
strongly on trials that were preceded by the retrieval of another, unrelated object card memory. This bias was observed in reward (A) and loss
(B) experiments. The left graph plots how well the old card’s value predicted participants’ choices (old vs. new card) for decisions that were or were not
made following episodic memory retrieval. Statistical comparisons were performed by testing the interaction between old card value and preceding
object memory. The right graph plots the model estimates of the likelihood of choosing old cards of different values on trials following or not
following object memory retrieval. Use of incrementally learned deck Q values was reduced on trials that were preceded by object card memory
retrieval. This bias was also observed in reward (C) and loss (D) experiments. *p < .05, *** p < .001.

Duncan, Semmler, and Shohamy 7

https://www.mitpressjournals.org/action/showImage?doi=10.1162/jocn_a_01447&iName=master.img-002.jpg&w=368&h=214


state-based mechanism implies that memory systems can
be primed by incidental contextual manipulations—a
phenomenon that could result in broad applications.
To tease apart these two explanations, we introduced a
novelty/familiarity manipulation, which was incidental
to the card game itself and which has been shown
previously to modulate the tendency to encode versus
retrieve episodic memories (Duncan & Shohamy, 2016).
Specifically, cards were dealt on “decorative mats,” which
were either novel or familiar images of scenes. These mats
did not predict the content of the to-be-dealt cards or
their outcomes and, thus, could only influence the type
of memory used by evoking a general bias toward
episodically retrieved information. Their influence on
value-based decision-making would, thus, strongly sup-
port the hypothesis that episodic memory states bias
the arbitration between episodically and incrementally
learned values.

Methods

Participants

Thirty-eight members of the Columbia community (17
women, mean age = 23.2 years) who had not participated
in Experiment 1 participated in the study for pay ($12/hr +
bonus earnings). All participants provided informed con-
sent at the beginning of the study, and all procedures were
approved by the Columbia Morningside Ethics Board.

Stimuli

One hundred ninety-five scenes and 460 objects were
used as stimuli. Five scenes were randomly assigned to
the “familiar” condition, and participants were preexposed
to them before starting the experiment. Additionally, two
decks of virtual playing cards (red and blue decks) were
generated. These decks drew from the same lucky and
unlucky distributions as were used in Experiments 1A
and 1B (Table 1).

Procedure

Participants performed the same card task as in Exper-
iment 1A. The only modifications were the insertion of
novel and familiar scenes and a reduction in the total
number of trials. Specifically, each choice was preceded by
the 1-sec presentation of a novel or familiar scene (referred
to for the participants as a “decorative mat”). Participants
were told that the purpose of the mat was to prepare them
for the upcoming cards. The scene remained on the screen
for the subsequent 1.5 sec decision period. Participants
were preexposed to the five familiar scenes in a brief task
immediately preceding the card task; each scene was pre-
sented five times (randomly ordered), and participants were
asked to indicate whether each image displayed an indoors
or outdoors scene.

We designed the experiment to determine whether in-
cidental contextual novelty influences which type of mem-
ory is used to make value-based decisions. A challenge for
this aim is that incremental learning, by definition occurs
over repeated experiences; thus, manipulations to in-
cremental learning are best assessed across trials. With this
in mind, we divided the experiment into two blocks,
which were designed to manipulate the use of episodically
learned values, but which could be used to measure how
our manipulation impacts both episodic and incremental
memory use. Specifically, we used the results of our re-
lated prior experiments to position contextual scenes
such that their combined influence during object value
encoding (trials with two new cards) and retrieval (trials
with one old card) would either drive participants toward
or away from using episodic memory.
We previously found that novel images enhance object

value encoding, whereas familiar images enhance object
value retrieval. We used this manipulation to create blocks
that enhance either encoding or retrieval of episodic mem-
ories to guide choice. We created “proepisodic” blocks by
having novel scenes always precede new–new trials, with
the aim of enhancing episodic encoding of the new cards
(Figure 4A) and having familiar scenes precede old–new
trials, with the aim of enhancing the retrieval and use of
object value memories. In “antiepisodic” blocks, we did
the reverse: Familiar scenes always preceded new–new
trials, whereas novel scenes preceded old–new trials.
Participants performed one block of each (approximately
150 trials), and the order of blocks was counterbalanced
across participants. Because each scene was presented im-
mediately before and concurrently with specific cards, the
scenes could additionally become associated with cards in
memory, and thus, their content could also prime mem-
ories for card values. To avoid this possibility, the trial
sequences were designed such that the same scene was
never present during both the learning of a card’s value
and the subsequent retrieval and use of that value.
Additionally, when possible, novel/familiar scene status
was reversed for pairs of participants such that similar
choices for one participant would be made in the oppo-
site experimental condition as another participant.
We hypothesized that the novel/familiar quality of the

scene itself, regardless of the actual content of previous
associations with the scene, would influence how people
use memory to make choices, with novel scenes enhanc-
ing encoding of episodic value and familiar scenes enhanc-
ing retrieval of episodic value. In line with the results of
Experiments 1A and 1B, we additionally hypothesized that
modulating the encoding and use of episodic memory
would impact the extent to which participants incremen-
tally learn about deck values.

Results and Discussion

As with Experiment 1, participants’ choices were influ-
enced by both the previously experienced values of
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object cards (β = 2.05, 95% CI = [1.64, 2.47], p <
.00001) and by deck luckiness (β = 0.18, 95% CI =
[0.10, 0.26], p < .0001). Additionally, the use of object
and deck values was not significantly correlated across
participants, r(36) =,.08, p = .62, suggesting that
participants were able to independently use both
types of memories to guide their choices. Object value
was a nonsignificant negative predictor of choice in 2
of 38 participants, and these participants were re-
moved from subsequent analyses. Including these
participants does not change the pattern of results
presented below.
As predicted, the degree to which participants’ choices

relied on episodic versus incremental learning differed as
a function of the experimental block manipulation. A di-
rect comparison of choices in each of the two conditions
revealed that participants were significantly more likely to
base their choices on memory for distinct object value
experiences in the proepisodic block as compared with
the antiepisodic block (β = 0.50, p = .03; Figure 4B).
Conversely, in the antiepisodic block, participants were
more likely to use incrementally learned deck values to
guide their choices (β = −0.013, 95% CI = [−0.03, 0],
p = .05; Figure 4B), as measured by a more shallow
learning curve in the proepisodic block as compared with
the antiepisodic block. Thus, when choices can be driven
by either episodic or incremental learning, familiar con-
texts enhance the likelihood that people’s choices will

be guided by episodically rather than incrementally
learned value. Importantly, familiarity was manipulated
in a contextual feature, which was incidental to the pri-
mary card game; and thus, these results unambiguously
support a general state mechanism over a selective atten-
tion mechanism.

GENERAL DISCUSSION

With multiple distinct learning and memory systems at its
disposal (Poldrack et al., 2001; Squire & Zola, 1996;
Knowlton et al., 1994; McDonald & White, 1993), the hu-
man brain has the capacity to represent past experiences
in several ways, from extracting regularities across similar
experiences and distilling decontextualized values to stor-
ing rich idiosyncratic details of individual events. Far from
redundant, these different types of memory representa-
tions have the potential to drive behavior in different di-
rections, raising crucial questions about how and when
different memory systems guide choices. Here, we de-
vised a new approach to estimate the independent influ-
ence of episodic memories from incremental learning on
people’s choices. Designing a task in which both sources
of value learning could adaptively guide behavior allowed
us to also identify a factor that arbitrates between the use
of these different types of memory—recent mnemonic
processing. Specifically, people were more likely to use
episodic memories on the trials following retrieval of an

Figure 4. Design and results of
Experiment 2. (A) Trials were
divided into blocks designed to
manipulate the use of
episodically learned values. In
proepisodic blocks, object
values were always encoded in
the context of novel scenes.
These objects were then later
repeated in the context of
familiar scenes. The
antiepisodic blocks had the
reverse scene contingencies.
Scenes were described as
“decorative mats” and were not
predictive of card content or
value. (B) Object values were
more often used in pro- as
compared with antiepisodic
blocks, whereas deck learning
was superior in anti- as
compared with proepisodic
blocks. The graphs on the left
panel plot how well choices (old
vs. new object) were predicted
by the old object values in each
memory block. The graphs in
the right panel plot how likely
the lucky deck was to be chosen
based on the number of trials
that elapsed since a reversal in
deck luckiness. *p < .05.

Duncan, Semmler, and Shohamy 9

https://www.mitpressjournals.org/action/showImage?doi=10.1162/jocn_a_01447&iName=master.img-003.jpg&w=325&h=261


episodic memory, even when the recently retrieved
memory had no bearing on the task at hand.

Our results suggest that the simple act of episodic re-
trieval primes our brains to retrieve other, ostensibly un-
related episodic memories within the ensuing seconds.
The demonstration of this behavioral phenomenon con-
firms the predictions of cholinergic models of hippo-
campal function (Easton et al., 2012; Meeter et al.,
2004; Hasselmo et al., 1996). According to these models,
cholinergic modulation of the hippocampus establishes
sustained biases, which shape hippocampal processing
for seconds (Pabst et al., 2016; Hasselmo & Fehlau,
2001). Higher cholinergic levels, evoked by detecting
novel contexts (Giovannini et al., 2001), are thought to
bias the hippocampus toward forming distinctive memo-
ries by suppressing the reactivation of related associa-
tions. Conversely, lower cholinergic levels, evoked by
recognizing familiar contexts, are thought to bias the hip-
pocampus toward memory reactivation, such as the value
associated with a particular object card. Thus, this frame-
work predicts that use of episodic memories should be
increased following familiarity or in the presence of
familiar contexts. Consistent with this prediction, our
prior research has demonstrated that recent recognition
of familiar images improves people’s ability to recall
other associations (Patil & Duncan, 2018) and use mem-
ories to guide decisions (Duncan & Shohamy, 2016). Our
prior research, however, was restricted to testing situa-
tions where only episodic memory cues are available to
guide behavior. We, thus, provide an important exten-
sion here by demonstrating that these same contextual
familiarity manipulations have the power to bias the
competition between different types of memory in more
realistic (and complex) situations where both memory
systems vie for behavior control.

We demonstrated this in two ways: First, people were
more likely to use episodic object memories on trials fol-
lowing the successful use of another episodic object
memory (Experiments 1A and 1B), and second, these
memories were also more often used following the inci-
dental presentation of a familiar image (Experiment 2).
The second finding provides stronger support for our
memory state framework, because multiple factors could
contribute to the within-task autocorrelation in object
memory use observed in the first experiments. For exam-
ple, successfully using an object memory may bias atten-
tion toward the objects on cards on the next trial (hence,
away from deck color). Of note, the magnitude of mem-
ory modulation observed in Experiments 1A and 1B was
substantially larger than that observed in Experiment 2.
This difference suggests that attention-based biases may
also contribute to the original effects. However, it should
be noted that we manipulated familiarity in very different
ways across experiments and that the within-task manipu-
lations employed in the first experiments may have been
particularly potent at evoking memory states. Specifically,
in this manipulation, preceding trials were coded as

“familiar” only when there was evidence that participants
recognized and used the object memories. Conversely, in
the incidental manipulation, contextual images were
coded as “familiar” whenever they were repeated—a pro-
cedure that does not account for participants’ recognition
of the familiarity. Our previous work suggests that the ob-
jective presence of familiarity does not elicit episodic
memory states as strongly as the subjective recognition
of images (Patil & Duncan, 2018; Duncan & Shohamy,
2016; Duncan et al., 2012). Thus, the effects observed in
the within-task manipulation may have also been strength-
ened by identifying the subjective mnemonic experience
associated with our manipulation, a step that we could
not take with the incidental manipulation because we
had no behavioral index of the mnemonic experience trig-
gered by the scene image.
Inspired by the cholinergic framework, we yoked re-

cent familiarity manipulations to the episodic dimension
of the task (e.g., proepisodic block), treating its impact
on incremental learning use as biproduct of episodic
memory modulation. Novelty detection, though, triggers
the release of multiple interacting neurochemicals (Avery
& Krichmar, 2017; Schomaker & Meeter, 2015; Patel,
Rossignol, Rice, & Machold, 2012; Mena-Segovia, Winn,
& Bolam, 2008). Of particular relevance to incremental
learning, salient, novel stimuli have been shown to elicit
dopamine release (Lisman & Grace, 2005; Ljungberg,
Apicella, & Schultz, 1992), and in the context of reinforce-
ment learning, new cues evoke fast and robust phasic re-
sponses in putative dopamine neurons (Lak, Stauffer, &
Schultz, 2016; Stauffer, Lak, Kobayashi, & Schultz, 2016).
These early responses are not modulated by the cue’s re-
inforcement history, unlike the smaller value-dependent
responses observed a fraction of a second later (Lak et al.,
2016). Given dopamine’s role in reinforcement learning,
value-insensitive novelty/salience responses have sparked
hypotheses that novelty could either directly modify
value learning by inflating the predicted value of new
cues or more generally promote the exploration of these
cues, without distorting prediction error computations
(Guitart-Masip, Bunzeck, Stephan, Dolan, & Duzel,
2010; Wittmann, Daw, Seymour, & Dolan, 2008; Kakade
& Dayan, 2002). Although the current study is not posi-
tioned to address the former hypothesis, it is notable that
participants were less likely to explore new cards follow-
ing the recognition of an old card in Experiments 1A and
1B. At first blush, this seems consistent with the hypoth-
esis that novelty promotes exploration, but this interpre-
tation is complicated by participants’ general reluctance
to explore novel options in these tasks. Furthermore, in-
creases in postnovelty exploration were not observed in
the more controlled Experiment 2, suggesting that con-
textual novelty is not always sufficient to bias exploration.
Our demonstration that multiple forms of memory

contribute to choice also has important implications for
understanding basic mechanisms of decision-making.
Prompted by the discovery that striatal dopamine release
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instantiates many of the properties of prediction errors
(Schultz, 1998), striatal learning mechanisms have
been the primary target of reinforcement learning and
decision-making research. More recently, however, there
has been growing interest in hippocampal and episodic
memory contributions to decision-making (Bornstein,
Khaw, Shohamy, & Daw, 2017; Bornstein & Norman,
2017; Murty, FeldmanHall, Hunter, Phelps, & Davachi,
2016; Shadlen & Shohamy, 2016; Peters & Büchel,
2010), often envisioned either as a key component of
model-based decision systems (Doll, Shohamy, & Daw,
2015; Wimmer, Daw, & Shohamy, 2012) or as a distinct
control system (Gershman & Daw, 2017; Lengyel & Dayan,
2008). The deck dimension of our task was designed after
the sort of “two-armed bandit” tasks routinely used to
assess striatal contributions to decision-making. Of note,
when participants were given the option of using this
source of information alongside episodic memories, they
readily used episodic memories. In fact, object values were
nearly as reliable a predictor of choice as deck values, de-
spite participants only having a single prior experience
with each object. This underscores the importance of
incorporating episodic, one-shot learning mechanisms
into theories of reinforcement learning. It also raises
interesting questions about the balance between these
different forms of learning across species. Are humans
uniquely predisposed to use episodic over incrementally
learned values, and if so, what benefits might be conveyed
by this predisposition?
In summary, we used neural models of learning and

memory to develop a new memory modulation approach,
an approach that modulates which memory system guides
behavior. The approach we identified—eliciting memory
recognition—was found to be contextual in nature and,
as such, has the potential to impact behavior broadly. It
is additionally notable that our approach appears to en-
hance rather than inhibit the use of episodic memories.
Striatal-dependent incremental learning is thought to be
particularly robust (Schwabe & Wolf, 2013), requiring less
attentional or cognitive resources than episodic memory
(Foerde, Knowlton, & Poldrack, 2006). Thus, identifying
a factor that could increase the more fragile use of epi-
sodic memories has important implications for the more
common need to overcome striatal habits. Lastly, iden-
tifying factors that impact the use of different memory
systems is a much-needed complement to recent re-
search investigating the arbitration of these memory
systems during learning (Lee, O’Doherty, & Shimojo,
2015). Combined, these learning and use factors will
provide new insights into how people adaptively make
use of multiple forms of memory and how this arbi-
tration can be brought back into registration when it
breaks down.

Reprint requests should be sent to Katherine Duncan, 100 St
George St., 4th Floor, Sydney Smith Building, Toronto, Ontario
M5S 3G3, Canada, or via e-mail: duncan@psych.utoronto.ca.
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